Regression Analysis (II)
 Final Exam.

Dec. 18, 2017
1.(120) Consider a logistic regression model $\operatorname{logit}(\pi)=\beta_{0}+\beta_{1} X$, and assume that the response $Y_{i} \sim B\left(m_{i}, \pi_{i}\right), i=1,2, \cdots, n$.
(1)(30) Show that the natural link function is logit.
(2)(30) Compute the log-likelihood function l in terms of β_{0} and β_{1}.
(3)(30) Show that $\frac{\partial^{2} l}{\partial \beta_{1}^{2}}=\sum_{i=1}^{n} m_{i} x_{i}^{2} \pi_{i}\left(1-\pi_{i}\right)$.
(4)(30) Compute the Pearson residual.
2.(150) Consider a oneway ANOVA model $Y_{j k}=\mu+\alpha_{j}+\epsilon_{j k}, j=1,2 ; \quad k=$ $1,2,3$, where ϵ is iid $N(0,1)$. Data set is given as follows;
$\operatorname{trt} A: 4,6,5 ; \quad$ trt $B: 5,4,3$
(1)(30) When we write the model in matrix form $\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\epsilon}$, express $\mathbf{X}, \boldsymbol{\beta}$ and \mathbf{y}.
(2)(30) Show that $\mathbf{X}^{t} \mathbf{X}$ is singular, and compute $\boldsymbol{\beta}$ using the corner point restriction.
(3)(30) Compute the deviance D_{1}.
(4)(30) Compute the deviance D_{0} under $H_{0}: \alpha_{1}=\alpha_{2}=0$.
(5)(30) Derive the chi-square test statistic and the F-statistic to test H_{0} : $\alpha_{1}=\alpha_{2}=0$.
3.(30) Assume that the response Y is a discrete r.v. with k categories, and x is a p-dimensional covariate. Construct a proportional odds model, and explain the model in detail.
4.(60) Consider a multiple linear regression model $\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\epsilon}$.
(1)(30) Assume that $\boldsymbol{\epsilon} \sim N_{n}\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)$, and that the prior for $\boldsymbol{\beta}$ is $N_{p}\left(\mathbf{0}, \sigma^{2} \mathbf{V}\right)$. Find the variance-covariance matrix posterior distribution for $\boldsymbol{\beta}$.
(2)(30) Find the Bayes estimator for $\boldsymbol{\beta}$ under the squared error loss.
5.(40) Assume that $\mathbf{z} \sim N_{p}(\mathbf{0}, \theta \mathbf{I})$, and let $V=\mathbf{z}^{t} \mathbf{z} / \theta$. Compute $E\left(V^{-1}\right)$

