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1 Probability and Distributions

1.1 Introduction

o Statistical(random) experiment: the outcome cannot be predicted with
certainty prior to the performance of the experiment.

o Sample space: collection of every possible outcome from the random
experiment, and denoted by %'

e Event: subset of sample, and denoted by A, B, C.

Example 1.1.1. Consider tossing a coin, then ¢ = {H, T}.

Example 1.1.2. Consider tossing two die (one red, the other white), then
¢ =1{1,1),---,(1,6),(2,1),---,(6,6)}.

Example 1.1.3. Let C denote an event of sum seven when tossing two die,
then ¢ = {(1,6), (2,5), ---, (6,1)}.

Remark 1.1.1. Two types of probability
(i) Relative frequancy approach.

(ii) Personal or subjective approach.
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1.2 Set Theory

Definition 1.2.1. If each element of set C; is also an element of set C,, then
C; is called subset of Cy, and denoted by C; C Cs.

Definition 1.2.2. If a set C has no elements, C is called the null(empty) set,
and denoted by C = ¢.

Definition 1.2.3. The set of all elements that belong to at least one of C;
and C; is called the union of C; and Cy, and denoted by C; U C; and it can
be generalized to any number of sets. For example, C;, UC, U ---UC, =
U1 Cr.

Example1.2.1. Let C, = {x: = < x <1, then | |G ={x:0<x <1}
p k+1
k=1

Definition 1.2.4. The set of all elements that belong to each of C; and C; is
called the intersection of C; and C,. and denoted by C; N Cp, and it can be
generalized to any number of sets C; N Cp N -+ - := M2, Gy

Example 1.2.2. Let C; = {x 0<x< %}, then ﬂ Ck = ¢.
k=1
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Definition 1.2.5. Let C be a subset of ¢, then the set that consists of all
elements of ¢ that are not elements of C is called complement of C, and
denoted by C° or C.

e A function is called point or set function if its domain is point or set,
respectively.

Example 1.2.3. point function: f(x) = 2x, f(1) =2
set function: Q(A) = # of positive integers in A
A={x:—0<x<6} =Q(A)=5

e The Syl’l’lbOl
x)dx

means the ordinary Riemann integral of f(x) over a one-dimensional

set C, the symbol
/ /C g(x, y)dxdy

means the Riemann integral of g(x,y) over a two-dimensional set C.
Similarly, one or two-dimensional sum is

Y f(x), Y. ) 8(xy).
C C

Example 1.2.4. Let Q(C) = [---- [dxydxy - -dx, . IfC = {(xy,x2,- -+, Xy) :
0<x <x<---<x, <1}, then

1 Xn X3 X2 1
Q) = [ [T [T gy v =
0 Jo 0o Jo n!
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1.3 The Probability Set Function

Definition 1.3.1. (0-field) Let % be a collection of subsets of ¢". We say %
is a o-field if
i) ¢ € #.

(ii)) C € B = C° € % (closed under complement).

(iii) C,Cp, - € B = U C; € (B) (closed under countable union).
i=1

e Example of o-field

1. #={¢,C,C%}.
2. % is the power set of ¢, i.e. the collection of all subsets of .

3. #=(\{ei: Z Cej ¢iis ao-field }. This is the smallest o-field
i=1
which containing &, and it is called the o-field generated by 2.
4. Let .7 be the set of all open intevals in R (set of real numbers),
then the o-field generated by .7 is called the Borel o-field.



Definition 1.3.2. (probability) Let 4" be a sample space, % be a o-field on
% . Let P be a real-valued function defined on %. Then P is called a proba-
bility set function if it satisfies the following three conditions

(i) P(C) >0, "C € & (non-negativity).
(i) P(¥¢) = 1 (normality).
(iii) C,Co, - € Bst. CuUCy = ¢, "'m #n,

then P (ﬂ Cn> =Y _ P(C;) (countable additivity).
i=1 i=1

Theorem 1.3.1. P(C) =1 — P(C°), "C € 4.
(pf) Since CUC* =% and CNCE = ¢,

1 = P(%)

Theorem 1.3.2. P(¢) = 0.
(pf) By taking C = ¢, we have C° = ¢, then by Thm.1.3.1,

P(¢) =1— P(€) = 0.

Theorem 1.3.3. C; C C; = P(C;) < P((Cp).
(pf) C=CU (Cg N Cz) = P(Cz) = P(C1) + P(Ci N Cz) > P(Cl).



Theorem 1.3.4. 0 < P(C) <1, 7C € 4.
(pHlp CCC ¥ = P(p) <P(C)<P(¥¢) = 0<P(C)<1.

Theorem 1.3.5. P(C; UCy) = P(Cy) + P(Cp) — P(C1 N Cy).
(PhCLUC, =CU(C{NCy) = P(C1UCy) = P(Cq) +P(CoNCY)
C,=(C1NGC)U(C{NCy) = P(Cy) =P(C1NCy) +P(CoNCY)
Hence, we have
P(CiUCy) = P(Cy) + P(C2) — P(C1 N Cy).

Remark 1.3.1. (inclusion-exclusion formula)
For 3 sets Cq, Cy, C3, it is not difficult to show that

P(CtUGUGCS) =p1—p2+p3

where p; = P(C1) + P(Cy) + P(Cs3),
p2 = P(Cl ﬁCz) —I—P(Cl N C3) —|—P(C2 N C3),
p3 = P(C1NCyNGC3).
In general,
P(CLUCU---UC) = Pl_P2+P3_"'+(_1)k71pk

where p; is sum of probability of all possibe intersections of i sets.

e C1,Cy, - - - are called mutually exclusive if C; N Cj = ¢, Vi

e Mutually exclusive sets Cq, Cy, - - - are called exhaustive if U C,=%¢
i=1

e Notation:

oo
|J Cu  for increasing sequence
lim C, = { "=1

n—oo .
ﬂ Cn for decreasing sequence
n=1
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Theorem 1.3.6. Let {C, } be a increasing sequence of events. Then

lim P(C,) = P(lim C,) = P (U1 cn> :
n=

Let {C, } be a decreasing sequence of events. Then

lim P(C,) = P(lim C,) =P (ﬂl Cn> .
n=

(pf) Assume {C, } is increasing sequence, and let R; = C;, R, = C, N Cr 4
P(lim Ci) = P ( U Cn)
n—=

“ (U

= ilp(Rn)

n
= JE{}O];P (R;)

= J%{P(Rl) - fP(Rj)}

=2

= lim [P(Cl) + i‘i{P(Cj) — P(Cj1)}
=

= lim [P(Cy) +{P(C) = P(C1)} +{P(C3) = P(C2)} + - - +{P(Cs) = P(Cu1)}

n—o00




Theorem 1.3.7. (Boole’s Inequality) Let {C,} be an arbitrary sequence of

events. Then
P (U cn> <Y P(Cy).
n=1

n=1

n
(pf) Let D, = U C;, then {D,, } is increasing sequence of sets.
i=1
Since D] = D]'_l U C]

P(Dj) P(D]‘_l) + P(C]') — P(D]‘_l N C]')

Now,
/(Ge) - o(5)

= lim P(Dy)
= lim | P(Dy) + é{P(Dj) - P(Djl)}]
-

IN

lim {P(Dl) + f P(D]-)}
j=2
- lim Y P(C)
j=1

- i P(Cp).

n=1



1.4 Conditional Probability and Independence

Let C1, Cy C €, then the conditional probability of C; given C; is defined as

P(C2 N Cl)

P = (CZ | Cl) = P(Cl)

,if P(C1) >0

Note that the conditional probability satisfies 3 conditions of probability

(i) P(C, | C1) > 0 (non-negativity).

i=2
(2, C3, - - - are mutually disjoint (countable additivity).

(i) P (G Ci | cl) = ip(c,- | C) if
i=2

(ili) P(Cy | C1) = 1 (normality).

Example 1.4.1. Consider drawing cards successively from a deck, at ran-
dom and without replacement. Find thd probability that the third spade
appears on the sixth draw. (& : spade, $ : diamond, & : clover, O : heart)

(sol) C; : two spades in the first five draws.
C; : a spade on the sixth draw.
We need to compute P(C; N C,), and use P(C; N Cy) = P(Cy | C1)P(Cr)

P(Cy) = )

= 02743, P(Cy | C1) = 11/47 = 0234 = P(C;NCy) = 0.064



From the definition of conditional probability, we have P(C; N Cp) =
P(Cy | C1)P(Cq) which is called the multiplication rule. For 3 events,

P(C2 | C1NCy) = P(C3NCi1NCy)/P(C1 N Cy)

= P(ClﬂCQQCQ),) = P(C3 ‘ ClﬂCZ)P(ClﬂCQ) = P(C3 ‘ ClﬂCQ)P(Cz ’ Cl)P(Cl).

In general,

P(ClﬂC2ﬂC3ﬂ'~~) = P(Cl)P(Cz | Cl)P(Cg ‘ C1QC2)P(C4 ‘ ClﬂC2ﬂC3) cee

Bayes Theorem: Let Cq,Cy, - - -, Cx be mutually exclusive and exhaustive
events, s.t. P(C;) >0,i=1,--- ,k. Then,

G PlEP(ClC)
PGIO= T pepiclcy =8

(pf) SinceC = (CNC)U(CNC)U---U(CNCy)

= P(C) = P(CNCy)+---+P(CNCy)
P(C1)P(C | C1) + -+ P(Cy)P(C | C)

k
= Y P(C)P(C | G) : law of total probability
i=1

Now,
P(C]'ﬂC) B P(C])P(C ‘ C])

P(Ci|C) = P(C)  y* . P(C)P(C | Ci)

Remark 1.4.1. P(C;): prior probability, P(C; | C): posterior probability.
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Definition 1.4.1. Two events C; and C; are independent if P(C; ‘ C) =
P(Cl), ie.

P(C1 | C) = % — P(Cy) = P(C;NCy) = P(C1)P(Cy).

In general, Cy, - - - ,C, are called independent iff for every collection of k
events (2 <k <n),

P(Ci1 ﬁCiZ N---NG; ) = P(Cil) .. 'P(Cik)-

Tk
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1.5 Random Variables

Definition 1.5.1. A function X is called a random variable(r.v.) if it assigns
to each element ¢ € ¢ one and only one number X(c) = x. The space or
range of X is 7 = {x : x = X(c),c € ¢}.

The r.v. X is called discrete r.v. or continuous r.v. if & is countable set or
an interval of real numbers, respectively.

The probability function P is defined on . Now, we define a probabil-
ity function Px defined on .#, and Py is often called induced probability
function by r.v. X. i.e.

P(C), C € #, Px(B), B € 7.

- Px(B) =Plce ¢ : X(c) € B], B Z.

Let X is discrete r.v. with 2 = {dy,- - - ,dy, }, then
PX(dz) = P(X = di), l = 1,' ce,m
is called probability mass function(pmf) of X.

Example 1.5.1. Consider tossing two fair die and let X be the sum of up-
faces. Then, ¥ = {(1,1),(1,2),---,(6,6)} and 2 = {2,3,---,12}. The
probability of sum 4 is

P((1,3)U(2,3) U (3,1)) = Px(4) = 3/36.

Definition 1.5.2. (Cumulative Distribution Function) The cumulative dis-
tribution function(cdf) of r.v. X is defined as

Fx(x) = Px((—o0,x]) = P(X < x).



Example 1.5.2. Let X be the upface of tossing a fair dice, then the cdf of X
is

Example 1.5.3. Let X be a real number chosen at random from the interval
(0,1). Then, it is reasonable to assign

Px[(a,b)] =b—a for,0<a<b< 1

Want to obtain cdf of r.v. X. Let x < 0, then P(X < x) = 0. Let x > 1, then
P(X<x)=1lLet0O<x <1, thenP(X<x)=P0<X<x)=x—-0=
x. Hence, the cdf of X is

0 ifx<O
Fx(x)=qx if0<x<1
1 ifx>1.

Theorem 1.5.1. (Properties of cdf)
(a) F(a) < F(b),”a < b (nondecreasing).
(b) xgrfloolf(x) = 0.

() lim F(x) = 1.

X—>00

(d) limF(x) = F(xo) (right continuous).

xJxg

P @ {X <a} C{X<b} = P(X<a)<P(X<b)by Thm.1.3.3
(b) gm {X<x}=¢ = Lirn P(X < x) =0by Thm.1.3.2
X——o00 X——00

() lim {X <x} =% = lim P(X <x) =1
X (o] X [ee]

(d) Let {X,,} be nay sequence s.t. x, | xg, and let C, = {X < x,}.
Then, {C,} is decreasing and ﬂ Cyn = {X < x¢}. Hence, by

n=1

Thm.13.6, im F(x,) = P <ﬂ Cn> = F(xo)-

n=1
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Theorem 1.5.2. P(a < X < b) = Fx(b) — Fx(a), Ya < b.

PH{—o < X<b}={-0<X<a}U{a<X<b}.

Theorem 1.5.3. P(X = x) = Fx(x) — Fx(x—), Fx(x—) = li%n Fx(z),i.e.left
zZTXx
limit.

(pf) "x € R, {x} = N (x — %,x} , therefore by Thm.1.3.6,

o
P(X=x) = PLFi(x—%,xH :nli_r>ro10P(x—%<X§x)
= Jim PR - B (- )] = Bl) = el




1.6 Discrete Random Variables

Definition 1.6.1. (Discrete Random Variable) A r.v. is called discrete if its
space is either finite or countable.

Definition 1.6.2. (Probability Mass Function) The probability mass func-
tion(pmf) of a discrete r.v. X with space ¥ is given by

Px(x)=P(X=x),x€9
e The support of a discrete r.v. X is the points where Px(x) > 0.

Example 1.6.1. Consider tossing a fair coin. Let X be the number of flips
need to obtain the first head. Find the the pmf of X.

(sol) We must have a string of x — 1 tails followed by a head, i.e. T -- - TH.
Hence, by independence of each flip,

== (1) (3) = (1) vmr2s

Example 1.6.2. An urn contains 100 balls, 20 white and 80 black. Let X be
the number of white balls when we draw 5 ball. Find the pmf of X.

(sol)

5)

6% 012345
Py(x)={ (1) @ FTOLEHY
0, otherwise.
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We are interested in computing the pmf of Y = g(X) where the pmf of X
is known and g is 1-1.

Py(y) =P(Y =y) =P[g(X) =y] = P(X =g (v)) = Px(g" ' (v))-

Example 1.6.3. Find pmf of Y = X — 1 when Px(x) = <%>x ,x=1,2,---

(so) g(x) =x—1= g (y)=y+1

y+1
S Py(y) =Px(y+1) = (%) ,y=0,1,2,- - : geometric distribution.
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1.7 Continuous Random Variables

Definition 1.7.1. (Continuous Random Variables) A r.v. X is called contin-
uous if its cdf Fx(x) is continuous, "x € R.

When we write cdf as
X
F(x) = / Fx(t)dt

then fx(f) is called the probability density function(pdf) of a continuous
r.v. X. p

fx(x) = - Fx(x)

Note that
P(X =x) =Fx(x) — Fx(x—) =0

for conti. r.v. also,
b
P(a < X <b) = Fx(b) — Fx(a) = / Fx(t)dt
a
and
Pla<X<b)=P@a<X<b)=P@a<X<b)=Pla<X<D).
By the properties of Fx(x), we have

(i) fx(x) > 0« Fx(x) is nondecreasing

(ii) /_0; Fx(H)dt =1  Fy(co) = 1



Example 1.7.1. Consider selecting a point at random in the interior of a
circle of radius 1. Find the pdf of X, where X denote the distance of the
selected point from the origin.

(sol) Note that 0 < x <1

0, x<0
Fx(x)=<¢x?, 0<x<1
1, x>1
2x, 0<x<1
X) =
fx(x) {0, otherwise.

Example 1.7.2. Find the pdf of Y = X? in Ex.1.7.1.
(sol)

F(y) = P

1 I |
@E%EA
S
[\

S
VAN
)
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Example 1.7.3. Find the pdf of Y = X2 when fx(x) = 3I1(—1 < x < 1).
(sol)

F(y) = P(Y<y

Il
=
>
N
IA
S ~—
<
V
[e)

Theorem 1.7.1. Let X be a continuous random variable with pdf fx(x)
and support Sx. Let Y = g(X), where g(x) is a one-to-one differentiable
function, on the support of X, Sx. Then the pdf of Y is given by

dx

fry) = fx(g ') ay

/]/GSY/

where the support of Y is the set Sy = {y = g(x) : x € Sx}.

(pf) Since g is one-to-one and continuous, it is either increasing or decre-
assing. First, assume it is increasing.

Fy(y) = P(g(X) <y) =P(X < g '(y)) = Fx(g7'(v))

d

S fyy) = @FY(]/) = fx(§7' )+



g is decreasing, then

() = —fx(g 1<y>>;’—;
Therefore, i
) = fx(g W) @

Example 1.7.4. Find pdf of Y = —2log X, where fx(x) = I(0 < x < 1)

(so) g7 (y) = e ¥/2,dx/dy = —Je /2

1
S frly) = 5e 2,y >0

Example 1.7.5.
0, x <0
Fx)=qi(x+1), 0<x<1
1, x>1
1 3 3
- <_ == — — — —_ - — — —
P( 3<X_2) F(2> F(-3) 1 0 1
1
P(XzO):P(O)—F(O—):5_0:5
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1.8 Expectation of a Random Variable

Definition 1.8.1. The expectation of r.v. X is defined as

/oo xfx(x)dx if/_oo |x|f(x)dx < oo (conti.)
Y xpx(x) if) | [x|p(x) < co(discrete)

XESx

E(x) =

Theorem 1.8.1. The expectation of Y = ¢(X) is given by

| s@)fxdx i [ |g()|f(x)dx < oo conti)

—00

E[g(X)] = Z g(x)px(x) ifZ\g(x)|p(x) < oo (discrete)

XESx
(pf) discrete case only

Y g()px(x) = ) Y, g(x)px(x)

xESx g€Sy {xeSx,g(x)=y}

= Y v Y px(x)

yeSy {xeSx.g(x)=y}

= ) ypy()

YESy
= E(Y)

Theorem 1.8.2. E[k191(X) +k2g2(X)] = k1E[g1(X)] + k2E[g2(X)] if E[g1(X)]
and E[g>(X)] exist.

(pf) We are only to show [ |k1g1(x) + kog2(x)|fx(x)dx < co. By trian-
gular inequality(|a + b| < |a| + |b|)

[ a1 () +kaga((0) fc)dx <l [ 1g1(0) fe () + o] [ Iga(o)lfx (x)dx < o0
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1.9 Some Special Expectations

Definition 1.9.1. y = E(X): mean of r.v. X

Definition 1.9.2. 02 = E(X — )% variance of r.v. X and ¢ = +/(0?): stan-
dard deviation

Definition 1.9.3. X: r.v. s.t. E(e'X) < oo, |t| < h for some i > 0. Then,
M(t) = E(e'X) is called the moment generating function(mgf) of r.v. X.

Theorem 1.9.1. X, Y: r.v. with mgf Mx(t) and My (t), respectively. Then,
Fx(z) = Fy(z), "z € Riff Mx(t) = My(t), "t € (—h,h), h > 0.(uniqueness
of mgf)

Remark 1.9.1. (1) mgf may not exist. For example, let X be r.v. with pdf
flx) = %I(x > 1), then

oo 1
Mx(t) = /1 etxgdx

b t22 1
= lim (1+tx~|——x+---)—2dx
b—oo J1 2 X
b 1 1252 b
= lim {——+tlogx+—+---} = 00
1 X 2 1

b—o0
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(2) Sometimes can find the pdf from the mgf. Let
Lo

2 3 4
Mx(t> = Ee + 1—0€2t + E€3t -+ E€4t.

Now,
Mx(t) = Y e¥p(x) = p(1)e! + p(2) + p(3)e* + p(4)e™.

By the uniqueness of polynomial coeff., we must have

X
p(x) = 10’ x=1,2,3,4

(3) Can compute E(X™), m = 1,2, - - using the mgf. By Taylor expan-
sion,
Mx(t) = E(e%)
P2X?  PX3

= E|1+iX+ gt

£2 )
= 1+tE(X)+EE(X)+---

- MUY (0) = E(xm).

(4) characteristic function(ch.f)
@(t) = E(e"X) : ch.f of rv.X.
Note that ch.f always exist. why?

o) = | [ flyx| < [ [ef(x)| da
Now,
6| = | costx + isintx| = Vcos? tx + sin? tx = 1
el <1

Also, can show E(X) = —i¢'(0), E(X?) = —¢"(0)
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(5) cumulant generating function(cgf)
P(t) =log M(t) : cgf of r.v. X.

Relation between moment and cumulant. Recall that

12 £
M) = 1 pat+ i + B e = EXT),
assume that
12 13
P(t) = xo+xit+ % + % + -+, Ky : m-th cumulant

t2
_ 10g(1+741t+%+---)

2 ) 3
o “l/tztz 1 ‘uztz 1 pot
— (y1t+7+---)—§(y1t+7—l—--- +§ ‘ult_i_T_{_... ..

1 1
= pt+ (= e + (s = B+ 207) + -

2 !

Ko =0, K1 = 1, K2 = Py — Ui = 07, k3 = p3 — Spapia+ 23 = E(X —p)* = i,

(6) skewness and kurtosis
03 = E[(X —u)%] /0 : skewness.

04 = E[(X — u)*)/c* : kurtosis.
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1.10 Important Inequalities

Theorem 1.10.1. If E(X™) exists then E(X*) exists for k < m.

(pf) We are only to prove / |x|*f(x)dx < o0

[ pex = [ el [l

< (x)dx + |x|™ f(x)dx

|x]<1 |x]>1

< [ pedst [l
= 1+EX|" <o

Theorem 1.10.2. (Markov's Inequality). u(X): nonnegative function of r.v.
X. Assume E[u(X)] exists. Then, Yc > 0, P[u(X) > c] < E[u(X)]/c.

(pf)Let A = {x : u(x) > c}. Then,
Eu(x)] = [u(x)f(x)dx
_ /A u(x) f(x)dx + /A () f(x)dx
> [ u(@f(ax
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Theorem 1.10.3. (Chebyshev Inequality). P(|X — u| > ko) < 1/k?, 'k > 0.
(pf) Let u(X) = (X — u)? and ¢ = k%02, then
P((X —u)? > k*0?) < E[(X — u)?|/K*0? = P(|X —u| > ko) < 1/k%

Definition 1.10.1. ¢: function defined on (4,b), —00 < a < b < o0. ¢ is
said to be convex if for all x,y in (a,b) and 0 < v < 1,

Plyx+ (1 =7yl < v¢(x) + (1= 7))

¢ is said to be strictly convex if the inequality is strict.

Theorem 1.10.4. Assume ¢ is differentiable on (a,b), then
(a) ¢: convexiff ¢'(x) < ¢'(y), "a<x<y<b

(b) ¢: strictly convex iff ¢’ (x) < ¢'(y), "a < x <y < b.
If ¢ is twice differentiale on (a,b), then

(c) ¢: convexiff ¢"(x) >0,"a<x<b

(d) ¢: strictly convex iff ¢""(x) >0, "a < x <b

Theorem 1.10.5. (Jensen’s Inequality). ¢: convex on an open interval I. X:
r.v. with support S C I and E(X) < oo — ¢[E(X)] < E[¢p(X)].

(pf)Let ¢ is between x and y, then

L
P(x) = o) +¢'()(x —p) +5¢"(0)(x — p)?
> ¢(u) + ¢’ (n)(X — u) = Take expectation on both sides.
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Example 1.10.1. {ay,---,a,}: set of positive numbers.
Let Xbearv.st P(X=a;)=1/n,i=1,--- ,n.

n
(i) E(X) = Zai% = a: arithmetic mean(AM)
i=1
(ii) Since — log x is convex, we have by Jensen’s ineq.,
“log[E(X)] = —log(a)
E[—log X]
! Y loga;

= —log(ay---an)

IN

1/n

1/n

ie. (a---a,)"/": geometric mean(GE) < a = %Zﬂi

(iii) Replace a; by 1/a;, then

1/n
()" <2
ap---ay n~a;
1/n

1
ie. (ap---ay)"’" > = harmonic mean(HM)

E aj;

We have shown the relationship HM < GM < AM.




2 Multivariate Distributions

2.1 Distributions of Two Random Variables

Definition 2.1.1. (X1, X») is called random vector if X1, X, are random vari-
ables which assign to each element c of " one and only one ordered pair of
numbers X1 (c) = x1, Xa(c) = xp. The space of (X1, X2) is Z = {(x1,x2) :
x1 = X1(c),x2 = Xa(c),c € €}.

e will use the vector notation X = ( §; ) = (X1, Xp)'

e The cdf of X = (X1, Xp) is
Fx, x,(x1,x2) = P(X1 < x1, X5 < x7)
and can easily show
Plag < X1 <by,ap <Xy <bp) =
Fx, x,(b1,b2) — Fx, x,(a1,b2) — Fx, x,(b1,a2) + Fx, x,(a1,a2)
e The joint prob. mass function of X = (X1, X3)" is
Px,x,(X1,%2) = P(X1 = x1, Xo = x2)
if X is discrete random vector.

e For the continuous random vector, fx, x,(x1, x2) satisfying

X2 X1
Fx, x,(x1,x2) = /_ /_ fxy,x, (w1, wo)dwidw,
is called the joint pdf, and we have

92Fx, x,(x1,%2)
dx10X7

= fx.,x,(x1,%2)
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o Fx, (x1) = xiignoo Fx, x,(x1, x2): marginal cdf of X;

o px,(¥1) = )_ Px,x, (%1, x2): marginal pmf of X;

X2

o fx,(x1)= / fxy,x,(x1, x2)dxp: marginal pdf of X;

Example 2.1.1. f(x1,x2) = x1+x2, 0 < x1 < 1,0 < xp < 1jpdf of X; and
X, compute P(X; < 1/2) and P(X; + Xp < 1).

(sol)

() P(X1 <1/2) = [/? f(x1)dxy

falx) = [ e,
= /Ol(xl —+ xz)dxz

1

= xx+1x2
= 1X2 220

= x +1
1/2
1 1/2 1 X2 x 3
<) = -1, 2 - =
P (Xl > /() (x1+2)dx1 > + 5 ) 3

(ii)
1 1- X2
/ x1, X2 dxldxz
0
1 1— Xz
/ x1 + X7 dxldJQ

I
Wi s— 5~



//g(xl,xz)f(xl,xz)dxldxz if//|g(x1,x2)|f(x1,x2)dx1dx2 < o0
Y Y g(x1x2)p(x1, x2) ify Y [g(x1,x2) p(x1,x2) < o0

X1 X2

E[g(X1,Xp)] =

Theorem 2.1.1. E[k191(X1, X2) +k292(X1, X2)] = k1E[g1(X1, X2)] + k2E[g2(X1, X2)]:
linearity property of expectation.

Example 2.1.2. f(x1,x) = 8x1x21(0 < x; < xp < 1) compute E(X;X3),
E(X;),and E[7X1X3 +5Xp].

(sol)

1 rxp 8
: 2y _ 2 _
(i) E(X1X5) _/0 /0 x1x5 8x1xpdx1dxy = 7

1 1 X2 4
(ii) E(Xz) = /0 XQfXZ(Xz)de = /0 X2 {/0 8X1deX1} dX2 = 5

8 4 20
2 _ 59 *_ 4V
(iii) E[7X1X5+5X;5] = 721 —|—55 3



Definition 2.1.2. Let X = (X1, X»)’ be a random vector.

Mx(t) = E [J’X} Jt=(t,b), ||t <h >0
= MX1,X2(t1/ t2)
E [etlxl+t2x2] : mgf of X = (Xq, Xp)'

Note that MX1,X2(t1/ tz) = f f €t1x1+t2x2fX1,X2 (Xl, XQ)dxlde

Mx, x,(t1,0) = //etlxlf(xl,xz)dxldxz

= //etlxlf(xl,xz)dxzdxl

_ / ehm { / f(xl,xz)dxz}dxl

= /etl"lfx1 (x1)dxq
= E[eh™]
Mx, (1) : marginal mgf of X

Similarly, Mx, x, (0, t2) = Mx, (t2): marginal mgf of X,

Example 2.1.3. f(x,y) =e YI(0 < x <y < 00):jpdf of (X,Y)

1

1) M(t, t :/m/oo Hx Y oY gy dy —
(sol) M(ty,t7) ; xe e Ydydx A—h-t)A—h)

M(t1,0) = : mgf of X,

1-t

M(0, ) = (1—1—t2)2 :
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2.2 Transformations: Bivariate R.V.’s

Want to find the distribution of Y = ¢(Xj, X2) when jpdf of X; and X, is
known. Two methods are possible. First, find the cdf of Y and take deriva-
tive. Secondly, use transformation technique.

(1) discrete case

(X1, X3): discrete random vector with jpmf px, x,(x1,x2) and sup-
port S
y1 = u1(x1,x2) and yp = up(xq, x2): 1-1 transformation from S to .7.

(X1, X2) 225 (Y1, Y,)

x1 = w1(y1,Y2), X2 = wa(y1,y2): inverse function
= P (1 y2) = pxox (W1(Y1,y2), w2y, v2)), (Y1, y2) € 7

Example 2.2.1. px, x,(x1,X2) = py' py2e 11712 /xqlxol, 00 = 0,1,2, - - -,
x2=0,1,2,--- Find the pdf of Y] = X; + Xj.

(sol) need to define Y; s.t. (x1,x2) — (y1,¥2) is 1-1.
Let Y, = Xy, then y; = x1 + x2 and y, = xp represent 1-1 transfor-
mation.

S = {(Xl,xZ)le :0,1,2,--- ,XZ:0,1,2,---}

=7 ={(yy2) 1y =012, =01y}
ie. x; = Y1 — Y2, x2 = y2. So, the jpdf of Y7 and Y is

Yi=Y2 Y2 ,—puy—us
i TTHye
, = , (y1, S
Py, (Y1, y2) = vl (v1,y2)
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Y1
) =) i y2)

y2=0
A o yi! IO
n! 2 -yttt 2
Yie=H1—H2
_ (pt+pa)e = 0,1,2,- -

!

(2) continuous case

Let X1, X, be conti. r.v.’s, and X = (X1, X»)’ be random vector with
jpdf fx, x,(x1, x2) and support S. Consider a transformation (x7, xp) —
(]/1,]/2) s.t.y; = ul(xl,xz) and y, = uz(xl, XZ) be 1-1 and let x; =
w1(y1,y2) and x, = wo(y1,y2) be inverse function with the Jacobian

9x Ix
S )
J=1ax ox
a1 Iy2

Then , the jpdf of Y7 and Y; is given by

frivs (Y1, y2) = fxo, %, (w1(y1,y2), wa(y1, v2)) I, (y1,y2) € 7
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Example 2.2.2. le’Xz(xl,xz) = I(O <x1<1,0<x< 1) Find the pdf of
Y1i=X1+Xp

(sol) Two methods are possible
(i) cdf technique
Fy,(y1) = P(M1 <y1) = P(X1 + X2 < y1)

(0 ,y1<0
yi rhi—x
/ / dxordxq ,0§y1<1
B () =370 R 1
1—/ / dxdx; 1<y <2
n-1ym—-xn
\]- /ylzz
(0 ,]/1<0
_ y3/2 ,0<y <1
1-(2-y1)?/2 ,1<y; <2
\1 ,]/122
Y1 ,0<y1<1
le(y): 2—y1 /1§y1<2

0 , O.W.

(ii) transformation technique
Need to define Y3 s.t. (x1, x2) — (y1,y2) be 1-1.

Let Y, = X, then y; = x1 + x2, y2 = xp represent 1-1 and x; =
Y1 — Y2, Xp = Yo are inverse function. Jacobian is | = 1.

Sy y2) = Wiy )l =1L, 0<yp <1,y <y <1+

Sfnly) = /fyl,yz(ylfyz)dyz

Y1

0 dyzz]/l /0<y1<1
= 1

/ dypp=2—-y1 ,1<y1 <2

y1—1
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Example 2.2.3. fx, x,(x1,x2) = }Lexp [—xlzﬂ} ,0< x1 <00,0< x <0
Find the pdf of Y1 = (X3 — Xa).

(sol) Let Y, = Xp, theny; = %(xl —X2), Y2 = xpis 1-1 and x1 = 2y1 + y2,
Xy = Y are inverse function with | = 2.

T = {(]/1/]/2) 1 =0 LYy <00, Yy > 0, —2]/1 < ]/2}

v y2) = fx,x 2y +y2,52)|]]
SO PR
= Zexp > Y1 Y2 §y2

1
= Ee*%*m, —00 <y <00,y >0, -2y; <2

© 1 1
/ Ee*ylfy%‘lyz = Eeyl ,—0o<y; <0
S ) = 7
1 Y24y, = 1 - >
A Ee Yo = ie ,y1 20

1
= Ee"yl', —o0 < Y1 < oo : double exponential or Laplace pdf



2.3 Conditional Distribution and Expectation

Py, %, (¥1,%2)

® Px, x4 (x2]x1) = ) conditional pmf of X, given X; = x;
1
 fxx, (x1,22) .. . B
i fX2|X1 (x2]x1) = A conditional pdf of X, given X; = x;
1

(e.g)
b
P(a < Xy < b|X1 = xl) = / f(x2|x1)dx2
a
E[u(Xz)|x1] = / u(xy) f(x2|x1)dxy : conditional mean of u(X,) given X1 = xq

Var(Xy|x1) = E[{Xo — E(Xa|x1)}?|x1] = E(X3|x1) — E2(X3|x1) :
conditional var. of X, given X; = x;

Example 2.3.1. Find E(Xj|x;) and Var(Xi|x2) when
f(xl,xz) = 21(0 <X < xp< 1)

(sol)
X2
fa(x2) = / 2dx; =2x1(0 < xp < 1)
0
) = = = 110 <1 <x; < 1)
f 1xz—2XQ—XQ 1 2

X2 X
E(X1|XQ) = /0 xlx—zdxl = EZI(O < Xy < 1)

X2 X 2 1 x2
o Var(Xq|x) = /0 (xl — —2> x_zdxl = éI(O <xp <1)



Theorem 2.3.1. (a) E[E(X3|X1)] = E(X2)
b) Var[E(X3|X71)] < Var(Xy) = Var[E(X|X1)] + E[Var(Xz|X1)]

(ph)
(a)

E[E(X2|X1)] = /{/x2fX2|X1(x2|xl)dx2}le(xl)dxl

= / ’ff;l 2 x1 dxzdxl
1

= //xzf X1,X2 dxldxz

_ / xz{ / f(xl,xz)dxl}dxz

= / xzfX2 (Xz)dxz
= E(Xy)

(b)

Var(Xa) E[(X2 — #2)%, 42 = E(Xy)
E{Xy — E(Xa|X1) + E(X2|X1) — p2}?]
E[{X2 — E(X2|X1)}?] + E[{E(X2|X1) — pa}?]

2E[{ Xy — E(Xa|X1) HE(X2|X1) — pi2}]

+

Now,
E[{Xo— E(X2|X1)}?] = E[E[{Xa — E(X2|X1)}?|X1]] = E[Var(Xa|X1)]
E{E(X2|X1) — u2}?] = E[{E(X2|X1) — E(E(X2|X1))}?]
Therefore,
Var(Xp) = E[{Xp— E(X2|X1)}?] + E[{E(X2|X1) — p2}?]
= E[VQT(X2|X1)] + VEH’[E(X2|X1)]
> Var[E(X3|X7)]
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2.4 The Correlation Coefficient

X:rv. with yy = E(X), o %2 ar(X).
Y:rv. with up = E(Y), 05 = Var(Y).

Cov(X,Y) := E[(X1—u1)(Y —pu2)] = E(XY) — E(X)E(Y) : covariance between X and Y.

_ Coo(X,Y) _ E[(X—p)(Y = po)]

: corr. coef. of X and Y.
0102 0102

Theorem 2.4.1. If E(X]Y) is linear in X, then E(Y|X) = pp + p (X 1)
and E[Var(Y|X)] = 03(1 — p?).
(pf) Let E(Y|X) = a + bX, by taking expectation on both side

E[E(Y|X)] = Ela+bX]
E(Y) = a+bE(X)
Ho = a-+bu

By multiplying X on both sides of E(Y|X) = a + bX

XE(Y|X) = aX+bX>?

E[XE(Y|X)] = E[aX+ bX?
E[E(XY|X)] = aE(X)+bE(X?)
E(XY) = ap1+Db(f +p3)

po10s + papy = apy +b(o + i)
(04 (04
S a=jp-p i b=p

E(Y[X) =a+bX = Vz—P u1+p X 142+P (X Hi)



E[Var(Y|X)]

Since

we have

[ =2 = pZ 5= ) vy f()d

1
2
//{y H2—=p (x_ﬂl)} fxy(x,y)dydx
_ //{(y—uz —2p(y — Plz) (x_yl) Pzg—ji(x—m)z}fx,y(x,y)dydx
= Var(Y)

- 2P%C00(X,Y) —I—pZ%Var(X)
1

2
2 207 o
-2 010 + 50
Pglp pe 50

1

= o3(1-p?)
k+m
% / / xty"e TR f(x, y)dxdy,
k+m
8114—(1;11,1'2)] — E(XkYm)
otjot] -
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2.5 Independent Random Variables

Definition 2.5.1. X and Y: indep. iff fx y(x,y) = fx(x)fy(y)-

Theorem 2.5.1. X and Y: indep. iff fxy(x,y) = g(x)h(y), where g(x) is
function of x only and g(y) is function of y only.

(pf) (=) If X and Y are indep., then fxy(x,y) = fx(x)fy(y), so that
take g(x) = fx(x), h(y) = fr(y)-

(<) Assume fx y(x,y) = g(x)h(y), then
fx(x) = / f(xy)dy
— [ s@hiy)dy
= g(x)/h(y)dy

A = [ flryax

Also, 1 = //g(x)h(y)dxdy =102
S f(xy) = 8(0)h(y) = aig(x)eh(y) = fx(x) fr(y)
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Example 2.5.1. fxy(x,y) = (x+y)[(0<x<1,0<y<1):jpdfof X and
Y. Are X and Y indep.?

(sol) Note that we cannot express fx y(x,y) as a product pf g(x) and h(y).
Hence, X and Y are not indep.

Theorem 2.5.2. X and Y: indep. iff Fx y(x,y) = Fx(x)Fy(y).
(pf) (=)

Fxy(x,y) = /xoo/yoof(t,w)dwdt
N /xoo/yoofx(t)fY(W)dwdt

— /xoofx(t)dt /yoofy(w)dw
= Fx(x)Fy(y)

_ PFxy(vy)
fX,Y(xly) = W

0*Fx (%) Fy (y)
0xay
= fx(x)fy(y)

Theorem 2.5.3. X and Y:indep. iff P(a < X < b,c <Y <d) = Pa <
X <b)P(c<Y <d).
(pf) (=)
Pla<X<b,c<Y<d) = F(bd)—F(ad)—F(bc)+F(ac)
= Fx(b)Fy(d) — Fx(a)Fy(d) — Fx(d)Fy(c) + Fx(a)Fy(c)
= {Fx(b) — Fx(a) }{Fy(d) — Fy(c)}
= Pla<X<Db)P(c<Y <d)

(<) trivial



Theorem 2.5.4. X and Y: indep. = E[u(X)v(Y)] = E[u(X)]E[(Y)].
(pf)
Eu(x)o(¥)] = [ [u(x)o(y)fir(xy)xdy
= [ [ o) fx( fr(v)dxdy

= [utofx@)dx [ o) fr(w)dy
= E[u(X)]E[o(Y)]

Theorem 2.5.5. X and Y: indep. iff M(t1,tp) = M(t1,0)M(0, t7).
(pf) (=)
M(t;, b)) = E I t1X+t2Y]
= E|e'%e
S flx} E e
= M(t1,0)M(0, 1)

[ uX th}

M(t,00MO,12) = [ evfx(x)dx [ e fy(y)dy
- / / e fiy (x) fy (y)dxdy
— //etlx“wfx,y(x,y)dxdy

By the uniqueness of mgf, we must have fx y(x,y) = fx(x)fy(y).



2.6 Extension to Several Random Variables

Definition 2.6.1. X = (X3, -+, X;;)": n-dim random vector, X;’s: r.v.’s

e Fy(x) =P(X <x)=P(X; <xq1, - ,X; < xy):joint cdf.
X J

oY =u(Xy, -, Xy) = E(Y) = /---/u(xl,--- ) fxooe (X1, - ) -

fx,(x1) = / . ‘/le,m,Xn(xl/' e Xy )dxg - dxy

le,X3(xll x3) = / e /lel...’Xn (xl, ce /xn)dX2dX4 .. .dxn

e xe (X100, Xn)
f2,"',n|1(x2' /xn|x1) = fl(xl)

_ fxy, X, (X1, xn)
fxpx, (X2, Xp)

f1|2,-~~,n(x1|x2/' e /xn)

Remark 2.6.1. mutually indep. é pairwise indep.
X

(counter example)

fx,m) = 3, (v,2,13) € {(1,0,0,(0,1,0),(0,0,1), (1,1,1)}
i) = 3. (63) € {(0,0),(1,0), (0,1), (1, 1)}
fitx) = 5,1 =0,1

- fij(xi x) = fi(xi) fi(xj) but f(x1, 22, x3) # f1(x1) f2(x2) f3(x3)
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e Xi,---,Xy are called iid(independent and identically distributed) if
X1, -+, Xy are mutually indep and have the same distribution.

o E(X) = (E(X),: -, E(Xa))’
E(W) = [E(W;;)], where W is m x n matrix of random variables.

Theorem 2.6.1. W1, W5: m X n matrices of r.v.’s.
A1, Ap: k X m matrices of constants. B: n X [ matrix of constants. Then

E[A1W1 + A2W2] = AlE[Wl] + AzE[Wz]

E[A;W;B] = AE[W4]B

e u = E(X): mean of X.

e Cov(X) = E[(X—pu)(X —p)'] = E[XX'] —pup’ = [03;] : variance-covariance matrix.
Cov(AX) = ACov(X)A’

Variance-covariance matrix Cov(X) is p.s.d.i.e. a’Cov(X)a > 0. why?
Let Y = a’X, then 0 < Var(Y) = Var(a’X) = a’Cov(X)a.



2.7 Transformation of Random Vectors

Consider transforming n random variales Xy, - -, X, to n random vari-
ables Yl/ e /Yn s.t. n = ul(xll e /xn)/ oy Yn = un(xlz e /xn)-

(1) one-to-one transformation case

S— Tisl-lstxy=wi(y1, -, Yn), - Xn =wn(y1,- -, Yn)

Y1 Yn
J=1 : tol, f(xq, e, xn) sjpdfof Xy, -+, Xy
W1 WY

Then, thejpdfof Y3, -+, Yy is

i, yn) = UIf(wiyr, - yn), s wn(y1, -+, Yn))

Example 2.7.1. f(x1,x,x3) = 48x1x0x31(0 < x1 < xp < x3 < 1),
jpdfof Y1 = X1/X5, Yo = X5/ X3, Y3 = X3

(sol) x1 = y1y2y3, X2 = Yyay3, x3 = y3 (1-1 transf.)

Y2ys Yiys Yiy2

0 2]
0 0 1

= v2y3

0<11 <0<y <l,0<ys <1

- 81, v2,y3) = 48(vayays) (v2y3) (v3) ly2y3| = 48y1y513, 0 < y; < 1,i=1,2,3
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(2) many-to-one transformation case
S— Tisk—1.
k
Let Ay, - -, A; be exhaustive sets s.t. U Aj=Sand A;NA; = ¢,

i=1
and A; — J is 1-1foreachi = 1,--- , k. Then, we apply the same
method to each A; — 7. i.e.

k

g(yll' o /yﬂ) = Z |]i|g(w1i(]/1;' o /yn)/' T /wni(yli' T /yn))
i=1

Example 2.7.2. f(x1,x,) = L11(0 < x2 + x3 < 1). Find the jpdf of
2. x2y, - X
Y= X3+ X3, s = (i

so) yiya = x3, %5 = y1(1—42), 0 < y1 < 1,0 < y2 < 1, ie
X1 = £y, X2 = £/ y1(1 - y2).

A1, x1 = /Y2, X2 = /y1(1 —y2)

Ay, x1 = —\/11Y2, X2 = \/y1(1 —y2)

Az, x1 = —\/Y1y2, X2 = —\/y1(1 —y2)
A1, X1 = \/Y1Y2, X2 = —\/1/1(1 —y2)

1 /¥ 1 /1
= 2\ »n 2\ 2 __1 1
Tl O 1 T T 4 S — o)
2 n 2\ (1-y2) yz(l ]/2)
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similarly, [, = s =Ja = J1

4

s 8y2) = Y Tl f(wii(yn y2), wai(yr, y2)
i=1
41 1

74\ /(1 — )
_ 1 I0<y1 <1,0<ys<1)

7T\/y2(1 = y2)
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3 Some Special Distributions

3.1 The Binomial and Related Distributions

(D binomial distribution

(i) binomial equation

o= (e

x=0

(i) Bernoulli trial

A seq. of experiment is called Bernoulli trials if each outcome is ei-
ther success or failure, and each trial is indep. X3, - - -, X, are called
Bernoulli r.v.’s if Xj,---, X, are indep. and P(X; = 1) = p and
P(X;i =0) =1—p,0 < p < 1. We denote that X; ~ B(n, p). Note

that
1

E(X;) =) Xif(x)) =01—p)+p=p

xi:0

Var(X;) = E(X?) —E*(X;) = 0*(1—p)+ 1 xp—p* = p—p* = p(1—p)
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(iii) pmf of binomial distriution

Let X1, -+, X, be bernoulli trials with prob. of success p. i.e. X; ~
B(1,p), Xi’s are indep. Then, X = }!' ; X; is the number of success
out of 7 trials, and X is called to have binomial distribution with pmf

p) = (1)p = p) S x =01

(iv) mgt

M'(t) = n[(1-p)+pe'" " pe!
M//(t) _ 71(1’! i 1)[(1 i P) + pet]n—ZPZeZt + n[(l . P) 4 pet]n—lpet

o= M(0) =np, 0 = M"(0) = M'(0)> = n(n—1)p> +np—n*p*> = np(1—p)
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i=1 i=1
(pf) Use the uniqueness of mgf, i.e. 1-1 correspondence between pdf
and mgf

My(t) = E[e]

m m
(vi) X; ~ B(n;,p),i=1,--- ,m.X/sareindep.=Y =) _X;~B| ) n, p>

= E[efXa—1%i]
= E[e!Xit ]
E[etXl . tXm]

[(1—p) + pe']™

= [(1—p)+ pet]zzm "i: mgf of B (2 n;, p)

i=1

Example 3.1.1. (WLLN: Weak Law of Large Numbers)
YNB(n,p):PO%—p‘ Ze) —0asn — o

(pf) Will use Tchebyshev’s inequality

P (|5
n

P

>¢) = (Y —npl = ne), EY) = mp, Var(¥) = np(1 — p) = o*

- ()

= Y —u|l>c¢ —a)
(' H p(1—p)
= P(IY—p|>ko) k=g, )"

p(1—-p)
< %:%%Oasn%oo
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Example 3.1.2. X1, X3, X3: indep. with the same pdf f(x) and cdf
F(x). Find the pdf of Y = mid(Xy, Xp, X3).

(sol) First, find the cdf of Y

Gly) = P(Y<y)
= P(mid(Xy, X2, X3) < y)
P(at least two of X1, Xp, X3 are <y)
Let {X; <y} be success, and Y be the number of successes out of 3.

ie.Y ~B(3,p), p=P(X;<y)=Fy).
Now,

@ negative binomial distribution

(i) definition

Consider a seq. of indep. Bernoulli trials B(1, p). Let Y be the number
of failures before the r-th success, then Y is called to have the negative
binomial distribution. The pmf of Y is

+r—1\ ,

and denoted by Y ~ NB(7, p).
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Now, we consider
gx) =1 —-x)~"
By using the Taylor expansion of g(x) w.r.t. x = 0,

8() = £(0)+ (x—0)g/(0) + 5 (x ~0)%"(0) + -
0 = 1-0)"=1

gx) = —r(1-x) (1) = ¢(0) =

§'(x) = —r(r-1)1-x)7 = (0) =r(r+1)

(iii) u and 0.

M'(t)
M//(t)

pr(=r)[1— (1= p)e'] " [=(1—p)e']
pl—r(r+ 1)1 — (1 —p)e'] "2 [—(1—p)e*]
+p (=) [1 = (1= p)e' ] —=(1 - p)e']
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Therefore,

prrir+1)p 21 —p)+pp " lr(1—p)—r*(1—p)?

r(1—p)
pZ

(iv) geometric distribution

Y ~ NB(1, p) is called the geometric distribution, i.e.

+r—1\ ,
Gr—1:%“1_”%y:QLZ”'

- (g)ﬁWl—pV,yzﬂbL2w~
= pQ-p)y=012--.

which is called geometric distribution.

ply) =

@) trinomial distribution

(i) pmf
The jpdf of the random vector (X, Y) is

flxy) = x!y!(n i.x —y)

which is called trinomial pmf and denoted by (X,Y) ~ T(n, p1, p2).

n—x—y

PIP2P3




(ii)) mgf

Myy(ty, t2) = E[ehX+hY]

= bixt+by n! n—x—y
,;)yZ:e xyl(n —x — y)ﬂ?lpng
! n! n—x n—x letZy

= LMoo Ly Py
x=0 ! y=0 —y)!
= (n n—x He e

= Z(>(P16)Z< )(PZe)pg, ’
x=0 y=0 \ Y

= é (Z) (p1e")* (p2e” + p3)" ™~
(p1

el + pae'? + p3)"

(iii) marginal pmf

The marginal pmf of X is

filx) = ”zx Frer ()

n—x—y

- ; y),Plpz( —p1—p2)

B n! = (n—x)! Voo ey
B x!(n—x)!plygoy!(n_x_y)!pz(l p1—p2)

n!

= i) s pmfof Bl py)

ie. X ~ B(n, p1).
Similarly, the marginal pmf of Y is B(n, p2).



(iv) conditional pmf
The conditional pmf of Y given X is

Fxyln) = f—ng(’“)y :

My(n x—y)! p1p2(1
APl Pl)

(n—x)! py(l—p1—pa)" ¥
yln—x—y)t (1- m)”"w

- (L)) ()
- (V) (o) )

i.e. conditional pmf of Y given X = x is B <n — X, 132;71 )
Can easily show X|Y ~ B <n -, 1f1pz>.

)n—x—y

@multinomial distribution

(i) pmf
The pmf of random vector X = (X, -+, Xk_1) is

n! X
14,%2 Xk
flxy, - x1) = FFH Pam i

where
Xe=n—x1— =X, pr=1—p1— - —k1,0< 01+ +x1 <1

and denoted by X ~ M(n,p1,- -+, px_1)-



(ii)) mgf

M(ty, - b1) = (pre" + pael 4+ prge + py)"

(iii) Each one-variable marginal pmf is binomial, each two-variables marginal
pmf is trinomial, and so on.
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3.2 The Poisson Distribution

@ pmf

motivation: Consier a Taylor expansion of g(m) = ¢ about m = 0, i.e.

g(m) _ g(0)+g/(0) (m—O)’+gN(0) (m—O)Z—i—---

1! 2!
mZ
= 1+m+j—|—
= Oom—x:em
x=0 x!

by

e "m*
p(x) = o= 0,12,---
and it is denoted by X ~ P (m).
@ mgf
M(t) = E[e]
— i etxe_mmx
= x!
o) F\x
e (met)
B J;) x!
= ¢ MM = exp[m(e' —1)]

M'(t) = melexp[m(e! —1)]

M'(t) = mee™ D 4 metmetem(@—1)

u o= M(0) = mee™@ ) =
o> = M"(0) - M'(0)* = (m+m*) —m* =m
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@ property

n n
X; ~ P(m;), Xi'sareindep. = Y = )_ X; ~ P (Z mz’)'
i=1 i=1

(pH
My(t) = E[e"]
E[et 2]

E[etxletxz .. etXn]

n

= H E[e!%i]

= f[exp[mi(et —1)]

i=1

= exp [Zmi(et —1)]
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3.3 TheT, x? and B Distributions

(D gamma distribution

(i) gamma function

I'(a) = /OOO v leVdy, a >0
(ii) properties of gamma function
a.Fora >1,T(a) = (« —1)I'(a — 1)
(pf)
[(a) = /0 Ty le vy
= e IE - [ DR ey

= 0+ (a—1) /Ooo Yy 2 Vdy
= (a—1DT(ae—1)

b. If w is positive integer, then I'(a) = (« — 1)!

(pf)
I(a) = (a—1)T(a—1)
= .(zx—l)(oc—Z) .- 1T(1)
Now, N
r(1) = A ylleVdy =1
S T(1) = (a—1)!
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(pf)
1 ®©
Z ) = 207Y
1"(2) /0 y2ze Ydy
Lety—% x > 0, then
1
1 1) xz -2 2
"(a) = 4 (3) e
1%} 2
= \/E/ e Zdx
_ \/—\/27'[
= V7
5_./(5 531 15
VAT o il
For example, T () 2F <2) 222\/E S —/r
(iii) pdf

The continuous r.v. X is called to have the gamma distribution with
parameters a« > 0 and B > 0 if its pdf is given by

xt—1lo—x/p

Tp I(x >0)

flx) =
and denoted by X ~ F((x, B).

(idea) By letting y = ,B inT'(«), we have

o= [G) e

0o a—1,—x/p
Sl = / Y Ty
o TI(a)p



(iv) mgf

M'(t)
M//(t)

o=

M(t) — E[etX]
0 xxtxflefx/ﬁ
B /0 ¢ T'(a)pB™ dx
_ /oo xa—le—x(—tﬁ;)dx
o Tp
0 b : a—1,—%/ %
_ / F(DC) 1_it> X 1 ( ﬁ‘)dx
0 I'(x)B r(a) <%)
g
(1-pt)*
IB(X
— (1_ﬁt)—tx
(<) (1= pt) (=) = ap(1— )"
ap(—a—1)(1—pt) " 2(=p) = af?(1-pt) " *(a+1)
= M'(0) = ap
= M'(0) — M'(0)% = a?B* + ap® — (ap)* = ap?



(v) sum of indep. gamma

n

X; ~T(a; B), Xi'sareindep. = Y = Y X; ~ T ()_a;, B)
i=1
(pf)

My (t) E[etZXi]

E[etxl L etXn]
n
= HE[etXi]
i=1

= [0 -p
— (- prIn

(vi) relationship with Poisson distribution
W: time needed to obtain k changes(or deaths)
G(w)=P(W<w)=1-P(W >w)

Now, {W > w} is equivalent to “less than k changes in an interval of
length w”. i.e.

k—1 k—1 w xe—Aw
P(W>w) = ZOP(X =x) = ;%

where, X: number of changes in an interval of length w. Now, it can

be shown - .
— X ,—Aw 1) —-1,—z
y (Aw) 'e _ z" e 2
Aw Zk*lefz
- G(w) _/0 N0 dz.

Let z = Ay, then

w /\kyk—le—)ty /\kyk—le—)xy 1
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@ x2-distribution

(i) definition

If X ~ T (%,2), then X is called to have chi-square distribution with
d.f. r, and denoted by X ~ x2(r).

(ii) pdf
x%_ e_%
flx) = 1ﬂ(§)2%,x>0
(iii) mgf

M(t) = (1 —2t)7"/2

(iv) pand 2.

(v) property
Xi~x3(r;),i=1,--- ,n. X/stindep. = Y = L X; ~ x> (L ).



@) beta distribution

(i)

(i)

pdf

A r.v. X is said to have beta distribution with parameters « and B if its
pdf is given by

f(x) = 11:((;‘)——1’:(‘[;))%_1(1 —x)fFLo<x<1

and denoted by X ~ Beta(w, B).

mgf

Mx(t) = E[e'X] = /01 etx—géz);(é)) 11— x)Pdx

In fact, Mx(t) does not have a closed(analytic) form.
Hence, to compute mean and variance, use the definition of expecta-
tion, i.e.

E(X) = / rﬂé—i-ﬁ)) =11 — x)Pldx
r

r(p
ITa+B) T'(a+1)IT(B) T(a+1+p) o1y o pe
0 T(a)T(B) T(a+1+p) T(a+ DI(B)" (1—x)" "dx
I'(a+1)T(a+pB)
Tt p i)
It
x+p

Similarly, can easily show

Var(X) = E(X?) = EX(X) = (w+p +’X1§(zx +B)?
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(iii) derivation from gamma distribution

X; ~T(a,1), X, ~T(B,1), X] and X, are indep. = L~ Beta(a, B).
X1+ X
(pf) Let
Yi= X4 X Vo= <
1= &1 2 2= 5

then it is 1-1 transformation, and the inverse function is

X1 = Y1y2, X2 = y1 — y1iy2 = y1(1 — y2)
Also,
S = {(.Xl,x2) 0 < x1 < 00,0 < xp < 00}
and
T ={(y1,y2) : 0 <y; <o0,0 <y <1}
[ = ‘ 2 0
1—y>2 —n
Therefore, the jpdf pf (Y1, Y?) is

= —vy1iy2 —y1(l —y2) = =

s, y2) = f(y1y2, y1(1 —y2))|]]

where
) = Mo nxg e
' T(a)1%  T(B)1P
I'(a)0(B)

: () Hy (1 — o) Y e vy (=) -
~8y2) = OTRE |~ 1]

_ ya+ﬁ—2+1y§c*1(1 B y2)/3—167y1

I'(a)0(B)



X1 is
X1+ Xp

Finally, the pdf of Y, =

$2(y2) = / g(ylfyz dy1

b n 1_y2 T e +ﬁ)y‘i‘+’3 e dy,
%%‘_1(1 —y2)f 0 <y <)

~ Beta(a,B)

@ Dirichlet distribution

X;~T(a;,1), Xi’sareindep.i=1,2,--- ,k+ 1.

X,
Y; = ! ,i=1,--- ,kand Vi1 = X1+ + Xpuq.
Then, the jpf of Y7, - - -, Y} is called the Dirichlet distribution with pdf

].—'(0(1 + T + [Xk-‘rl) Nq— 1 Ny — 1 K — 1 o -1
PRI — 1 — — e e e — k+1
SW ) = T T Ty 0 Y2 % (o Yk)

(pf) cf. If k = 1, the Dirichlet distribution reduces to the Beta distriution.
i.e., the Dirichlet distriution is a multivariate extension of Beta distribu-
tion.

k+1
yi= o Y2 = 2 Yk = Yk+1 = Z Xi
Tty ’ + 1
Zk-l—l Zk-l—l Zk-l—l
which is 1-1 from (x1,- -+, Xk11) to (Y1, -+, Yka1)-
Inverse functions are
X1 = Y11, X2 = YoYka1r o Xk = YiYkatr X1 = Yeo1 (L —=y1—y2— - —yx)

S={(x1, -, xy1):0<x;<o0,i=1,---,k+1}
T={1, Y1) 0<yi<Li=1,-- k0 < ypy < oo}



Yk+1 0 0 0 1
0 Ykt1 0 0 Y2
0 0 Yev1 - 0 3
I=1 : : : : =¥in
0 0 0 o Yk Yk
“Yir1 —Yke1 —Ykel 0 Ve 1— Y ui
Also, the jpdf of (X3, -, Xis1) is
x“lile_xl/l xak+1_1e_xk+1/1
flxa, - xpsg) = -~ . k+1 .
I(ag)1m I (agy1) 1%+
_ x‘fl_l e xgi+11_1e_(xl+"'+xk+1)
[(ar) - T(agyr)
Hence, the jpdf of (Y3, -+, Yy1) is
Syi,  Ykr1) = fWVern  Yekrn Yes1(L—y1 — -+ — yi)) vk
) W)™ e U=y — - —yp) P9t

[(ar) - T(agr)

Finally, the jpdf of (Y3,---,Y) is

g(]/lr"' ka) - ‘/0 g(yll /]/k—i—l)dl/k—H

Ty + -+ agyq) o-1 w1

.. 1 — g — -y )M+171
D) Tl 100 o=
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3.4 The Normal Distribution

(D derivation

First, want to compute

Similarly, consider

(o] 2 (o] (o)
o ([t < ([voa) (L) [ o

use polar coordinate system, i.e. y = rcost, z = rsinf

consider

{(y,z): —0o <y < oo, —co<z< 0} — {(r,0):0<r<oo,0<0<2r}

1-1 correspondence between (y,z) and (7, 6)

? = / / W*+2)/24y 4,
= [ [ raras
— o /2
[

27
= 1d6
0

= 271

cosf —rsinb
sinf  rcos6

N D=

dy
1=z

‘ = rcos*0 — (—r)sin®0 =r

&l &ml U
S

Therefore,
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i.e. 1
1= /—e_yz/zd
V27T 4
Also, let
_X—H
Y o’
then
S | —p\2 151
1 = / e_(T) /2 dx
—00 /27T o
© 1 ( —#)2]
= exp | — dx
/oo N 2710 p { 2072
@ pdf

The continuous r.v. X is said to have normal distribution with mean y and
variance ¢? if its pdf is given by

)2
exp{—%},oo<x<oo

flx) =

21t
and denoted by X ~ N(u,c?).

As a special case, if ¢ = 0 and ¢? = 1, then it is called standard nor-
mal(Gaussian) distriution with mean 0, variance 1

_ Lefxz/
f(x) - m 2
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= E[e!X]

_ © ix _ (x — ‘u)Z
= _Ooe _27_mexp { 502 } dx
© 1 [ 1
ex —20%tx + x% — 2ux + 2}dx
/—oo MU 20'2{ ]/l V }

Y 1 2 n(2 2 2 2 2 .2
_/ \/_Uexp 52 (7 = 2(CPt )+ (Pt ) — (0% )+ 7Y | dx

= / 2 2(172 {(x = (®t +p))* — o*t? - Zazty}l dx
7'[0'

_ \/_a  {x- (c;zt;r mY (ty + ?)} dx

~ exp (Wi) / rfxp {_{x—((;'t;rﬂ)}z}d

o2
= exp (yt + T)

M(t) = (u+o? ot
= (u+ot)exp yt+T

" 2 o212 5 o212
M(t) = cPexp |ut+—— |+ (u+ 0 t)exp ( pt+ ——

M'(0) = p
o> = M'(0)— M (0 =0+ > —pu* =0

N =
Il
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@ higher order moments

Let X ~ N(u,0?), then Z = % ~ N(0,1) and My (t) = e"/2,
Using the mgf of Z, we can get E(X¥), k= 1,2, --
Recall that

E(Z3)

E(Z?
(2 p AL

2! 3

2 2\ 2 2\ 3
2/2 _ £ o1/r 1/ L
e —1—|—2—|—2!(2 -|-3 5 +

PL3x1, (k=1 ()W)

Myz(t) =1+ E(2)t +

also,

TR TR (2k)!
Therefore,
2%y _ _ (2K)!
E(Z%) = (2k—1)--(3)(1) = S
E(sz—l—l) =0
Now,

E(X) = E[(n+02)"
k

= E LZ (f) (0z) ykj] : binomial eq.

=0
= 3 (H)oe@

j=0 N
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©®) properties

(i) Z~ N(0,1) = Z> ~ x*(1)
(pf) Let V = Z?, then the cdf of V is

F(v) = P(V <o)

1
=3
N
N
Q] IN
=

Lety = 22, then dy = 2zdz, ie. dz = ——d
y y N

v 1 1
LEE) =2 [ e
(v) . otz

Therefore, the pdf of V is
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(i) X; ~ N(p;, 0?), X/sareindep. =Y = ZaX N(Zalyl,Za )
i=1
(pf)

My(t) = E[e"]
= Elexp(t)_a;X;)]
E[etalxletEIzXz .. etaan]

n

— EE[etaiXi]
= ﬁM (ta;)

i=1

= Hexp (ytal + Z0?t?a 2)
= exp {t Zai‘ui + Etz Za%alz] : mgf of N (Zaiyi,Zﬂ%UlZ)

®) contaminated normals

Z~N(0,1),I; ~ B(1,1—¢), Z and I are indep.
Want to find the pdf of

W — IgZ —‘I_ (1 — Ig)o-cz

Fy(w) = P(W < w)

PW <w,I.=1)+P(W < w,I. = 0)

PW < w|l. =1)P(I = 1) + P(W < w|I. = 0)P(I, = 0)
1—¢e)P(Z<w)+eP(Z<w/o;)

y
— (-0 +eo ()

wle) = (1=pgte) + 9 (2)
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3.5 The Multivariate Normal Distribution

(D derivation
(i) standard normal case

Z=(Zy,---,Zy),Z;i ~ N(0,1), Z;s are indep.
Then, the pdf of Z is

fz) = T2

which is called the standard multivariate normal distribution with
E(Z) =0, Cov(Z) = I, and denoted by Z ~ N, (0, I;).



Now, the mgf of Z is

Mz(t) = E[t'Z]

(ii) spectral decomposition

Theorem 3.5.1. spectral decomposition theorem

Let A be n x n symmetric matrix, then 3 an orthogonal matrix I s.t.
A =T'AT, then A = diag(Aq,--- ,Ay) and A;’s are eigenvalues of A
and corresponding eigenvectors are column vectors of I'.

(iii) general normal case

Let X be n x n symmetric and positive definite matrix. By spectral
decomposition,
Y =T'AT

where A = diag(Aq, -+, Ay) st Ay > Ay > > Ay > 0.
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Then, 3AY? = diag(\/A1,- -+ ,v/Ay) and

Y = I'AT
I—-/Al/ZAl/ZI"
I'AY2IT' AY2T
21/221/2

where $1/2 = T/AY/21

S (ZV2)1 = ('AV2r)l
(r)—l(Al/Z)—l(l—vI)—l
I'A~YT

Let Z ~ N,(0,I,) and let
X=3xY2Z+u

ieX2Z =X -—p=Z=x"12X—p)

dz

= 1=y = 2

] =

g(z) = (2m) " %exp [—%z’z} : pdf of N, (0, I,)
Hence, the pdf of X is

flx) = g@2x-p)l
= (@) exp |~ (2K - )V EVAX - ) 22

= @) M ey | <5 (X )= (X - )

which is called the multivariate normal pdf with mean y and variance-
covariance matrix £, and denoted by X ~ N, (u, X).
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Also, the mgf of X is

Mx(t) = E[et'X]
E

= Elexp(#'ZV2z 4 t'p)]

= exp(t'p)Elexp{(Z!/t)'z}]

— exp(tp)Mg (s

— expltplexp | (21721 (£121)

[
[exp{t' (222 + p)}]
= exp [t’y + %t’Zt}

@ bivariate normal distribution

Flow) = @) e exp | 50— (X )]

s () () (2
= exp|— -2
27102094/ 1 — p? d 2(1 —Pz){( 01 P\ 02

()
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@ linear transformation
X ~Ny(up,2)=Y=AX+b~ N,(Au+b, AZA’)
(pf) First, recall that

Mx (t) = exp {t’y + %t’Zt}
Next, compute mgf of Y

My(t) = E[et'Y]
= Elexp{t'(AX +b)}]
= Elexp{(A't)X}el ?]

= et,bexp {(A’t)'y + %(A't)’Z(A't)}
= exp (t’b +t'Ap + %t’AZA’t)
= exp (t’(A,u +b) + %t’AZA’t)

which is mgf of N, (Au + b, ALA")

@ marginal and conditional distribution

Assume that
X ~ Nn (l/l, Z)

Decompose X s.t.

X1 Il1> <211 Zu)
X = , = ’Z:
(Xz) : (F‘z o1 22
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(i) marginal distiribution

Let A = (I, : O), then

AX:(Im:O)(%)le

i.e. X1 is linear transformation of X

E(X;) = E(AX)
Ap

- o (3)
= M

Cov(X1) = Cov(AX)
= ACov(X)A’

. , X1 X2 I
_ (Im.O)(221 222)(0)
= Xn

S X~ Nn(}”lr Z11)

Similarly,
X5 ~ Nu(pp, Z22)

(ii) indpendence of X7 and X>

X ~ Ny (p,X), X1 and X; are indep. iff X1, = O.



(iii)

(pf) The joint mgf of X; and X is

My, x,(t1,t2) = Elexp(t1 X1+ t;X5)]
_ E[et/X]

= exp (t’,u + %t’Zt)

1 2
= exp (e (10 )+ 56 (50

1 1
= exp {t{yl + thus + Et’lzntl + ) Zpt +

2

Now,

212
20

)

2

(2)]

1
thiomty +

1 1
Mxl(tl)MXZ(tz) = exp {t{yl + Etizlltl} exp [téﬂz + §t£222t2‘|

Hence, X and X are indep. iff Mx x (t1,t2) = My (t1)Mx, (t2)

iff 210 = O.

conditional distribution of X given X,
X1 X2 ~ Nuu(pay + Z122; (X2 — ), Zn1 — Z12%5 Xy )

(pf) Let
W =X —Z1p55, X,
and consider jpdf of W and X

W\ _ (L —Zp%, X\
(X2>_( O In—m X2 =AX

( w ) — AX ~ Ny(Ap, AZA")

AN B ¥7) ¥t 1
Ap = (O I Ho

— ( 1 — T2 iy )
I}

i.e.

where

2

1
téZzztz}



I —Xp5t Y1 X I o)
( O I Z‘21 Z‘22 —2221221 I
_ (T —ZZn'Ey; O

Hence, W and X, are indep.
Therefore,

W ~ W|X;y ~ Ny(pt; — Z12Z00 o, T11 — 12505 T01)
Now,

X1|Xa ~ WHIpZ X,
~ Nip(py — Z0Z o + L1220y X, By — L1p25,121)
~ Nu(p + Z1222721 (X2 —p), X1 — Z1222721221)

® relationship with x?-distribution

X~ Nu(p,Z) = W= (X—p) T (X —p)~ x*(n)

(pf)
Z=3%"Y2(X —u) ~ Ny(0,1,)

W=2'Z=Y zz~ x*(n)
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3.6 t-and F-Distributions

D t-distribution

(i) definition
W ~ N(0,1),V ~ x*(r), Wand V are indep. Define

W
V/r

then the r.v. T is called to have a t-distribution with degree of freedom
r, and denoted by T ~ t(r).

(ii) derivation of pdf
Consider a transformation
(w,v) — (t,u)

where
w

Vo/r

then it is 1-1 transformation with inverse function

w=1tvu/\r,v=u

F=

,U="7

and
dw  dw
]:' o ‘:‘\/ﬂé\ﬁ ’*/Zl\/ﬁ = Vu/r
dat
Now, the joint pdf of (w, v) is

r__ _ 2 r_ _
7w2/2v§ 16 v/2 e~ w /202 16 v/2
flw,v) = —e =

V21 I (%)2/2 V2nT (§)2r/2
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Then, the joint pdf of (¢, u) is

st = £ (N

1
V2T (5) 2727 < 2r

g0) = [ gttuydu

(iii) p and o
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Var(T) = E(T?) —E*(T)

— ),
- v
= EwE ()
Now, E(W?) = Var(W) + E2(W) =1+0*> =1

E (%) = rE(Vv7Y)

@ F-distribution

(i) definition
U~ x2(r1), V ~ x*(r2), U and V are indep. Then

. U/T’l
N V/T’z

is called to have F-distribution with degrees of freedom r1 and r,, and
denoted by W ~ F(rq,12).
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(ii) derivation of pdf
Consider a transformation

(u,v) — (w,z)

where
_ /n Z=10
o/ T
then it is 1-1 transformation with inverse function
"
U= —wz,v=2z
T
and ; . .
u u 1 1
]:"zi_w ?’:‘TZ VZW‘_r_lz
TZZ) d_Zz) 0 1 o
Now, the joint pdf of (U, V) is

flu,0) = fu ( ) fv(v) : UandVareindep.
u —1o—u/2 5 —1p=0/2

T AT (g
uF—1p3—1,—(u+0)/2

r(3T(5) 20
Then, the joint pdf of (W, Z) is

stw,z) = f(fwzz) 1l
1

%2_16— <r—1wz+z) /2

z
[T ()20 n

- —1+1 n




Hence, the pdf of W is

g(w)

(iii) u and o

2

Pt
r
[T

) (r1+r2)/2 dz
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> (r1+72)/2



Var(F)

In general,

E(V7F

@ Student’s theorem

Theorem 3.6.1. X1, -+, X,,:iid N(p,02), X

Then

(@) X ~ N(u,0%/n)

(b) X and s are indep.

_ 2
© "% 1)
X—p
@ S~

r(3-
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(ph)

(a)

(b)

Let
X - (Xll /X}’Z)// 1 - (1/ /1)/
Now, let
o=t (L)
n n n
then
a’X ~ N(a'(u1),a'Cov(X)a)
because
X ~ N, (u1,021)
ie.
X =a'X ~N(u,c*/n)
Let
Y=(X1-X,--, X, = X)
Consider

X 11
0= (5) (o)
First, will show X and Y are indep.
Recall that if both X7 and X, are normally distributed then,

CO’U(Xl, Xz) =0

implies that X7 and X, are indep.
Since X and Y are normal to show independence between X and Y
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<

we need to show Cov(X,Y) =

Cov(W) = Cov(

- ( 1_"1111’ )XUZI( 11 1-1117)
1 1 1
. L1t (1- )
- ¢ 1497\ 1 149/ 2
(1-tw)i (1- 1)
1 1 1
, 1 (v - L) )

1 1
(v-tw1)  -hw

1
n
1
_ 2(n 0
‘7(0 1—%11’)

Therefore,
Cov(X,Y) =0
i.e. X and Y are indep.
Finally, note that
1 . 1 - _
2 _ X)) = 4 = - X ... — X)?
s = n—lZ(XZ X) Y'Y, Y (X1 —X,---, X, — X)

i.e. s? is function of Y. Therefore, X and Y are indep.

(c) Note that

(X = L (% X+ K p)
i=1 i=1
= Y (Xi— R 42) (X K)(K — ) 4 (K o)’
i=1 i=1
- i(xl—)‘()ern(X—V)Z

N
I
—_



Therefore,

= o o2
Now,
Xi—p Xi—p)’ noXi—p\
SEanon = (B2E) Lo = ¥ (BE) ~ e
i=1
n(X - p) X—ﬂ>2 )
_— ~ 1
== (5 £~
Apply mgf technique on both sides, i.e.
Ma(t) = E[e]
— E[et(B+C)]
— E[etBetC]
E[etB E[etC]

(1—2t)""2 = E[e'P](1 — 2¢)71/2
SE(BY = (1—26)72(1—26)7V2 = (1—28)""1/2 - mgf of x2(n — 1)

CY ]
_ X—p
A0 _ o/vn z ~tn—1)

s/ SO ) T V(-1

where, Z ~ N(0,1),V ~ x*(n — 1), Zand V are indep.




4 Unbiasedness, Consistency and Lim-
iting Distribution

4.1 Expectation of Functions

D definitions

(i) Xi,Xa, -, Xy, are called random sample (r.s.) if they are iid.

(ii) Tis called a statistic if T is a fuction of random sample only.
(i) X =Y. %0 sample mean,  s* = 15 Y (X; — X)? : sample variance
@ expectations
x=(Xy, -, Xn), y=(Y1,---,Y,) : ramdom vector
a=(ay, - ,ay), b= (b, ,by) :constant vector
Let T=a'x, W =b'y be statistics
(i) E(T) = a’E(x)

(i) Var(T) = a’Cov(x)a
(iii) Cov(T, W) = Cov(a'x,b'y) = a’Cov(x,y)b

@ wunbiasedness

Xj, -, Xp : random sample from f(x: 6), 6 € Q) is parameter

T =T(Xy, -+, Xy):statistic, Tis called unbiasedif E(T) =6, "0 € Q.



4.2 Convergence in Probability

D definitions

Definition 4.2.1. Let {X,,} be a seq.of r.v.’s and X be ar.v.
We say X,, converges in probability to X if Ve >0, P(|X, —X| >¢e) — 0
asn — oo, and denoted by X, L X.

@ properties
(i) WLLN

Theorem 4.2.1. {X,,} : seq. of iid r.v.’s with mean y, variance 02 < co.

Then, X, LN .

(pf) Can be shown easily by Chebyshev’s ineq.

(ii)
Theorem 4.2.2. X, i> X, Y, i> Y = X, +Y, L X+Y

(pf) By triangular ineq.
we have | X, — X|+ Y, — Y| > |(Xn + Yn) — (X +Y)]

S P(|(Xn 4 Yn) — (X+Y) >¢) P({|Xy — X| 4+ [Yu — Y|} > ¢)

<
< P(|(Xn—X) >e/2)+P(|Yy — Y| >¢/2)



(iii)
Theorem 4.2.3. X, i> X, ,a:const. = aX, i> aX

(p) P(laXy — aX| > &) = P(|a[| Xy — X| > €) = P(|Xy — X| > ¢/|a])

Theorem 4.2.4. X, — a, g : conti. functionata = g(Xj) £, g(a)

(pf) Lete > 0. Since g is conti. ata, 36 > 0 s.t.if [x —a| <,
then |g(x) — g(a)| < e. Thus, |g(x) — g(a)| > e implies |x —a| > ¢.
Therefore, P(|g(X,) —g(a)| > ¢) < P(|X, —a| >6) — 0

(v) (Remark)

Theorem 4.2.5. X, —— X, g :conti. = ¢(X,) N 2(X)

@ consistency
(i) definition : a statistic T}, is called consistent est. of 0 if T, Ny}
(ii)
2

Example 4.2.1. Xy, -+, X, : r.s. from dist” with mean y, variance o~.
Then, s> = ¥(X; — X)?/(n — 1) is consistent est. of o

pf) 2= 1(LEX? %) 51 [E(XD) — 42 = o
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4.3 Convergence in Distribution

@D convergence in distributions

(i) def

Definition 4.3.1. {X,,} : seq of r.v.’s with cdf Fx,, X:r.v.with cdf Fx.
We say X, converges in distribution to X if lim Fx, (x) = Fx(x), "x in
which Fx is conti., and denoted by X, Ly x

X is also called limiting distribution of X,, or asymptotic distribution
of X,,.

(i)
Example 4.3.1. Let X}, have the cdf

Fx,(x) = T 2w

x 1
/_oo N

N /ﬁx L2y
—o 27T

by changing variable v = \/nw.

0, x <0
lim Fx, (x) =¢1/2, x=1
X—>r 00

1, x> 1.

So, take
0, x<0

Fx) = {1, x>0
We call X is degenerate at x = 0.
(iii)



Example 4.3.2. Let X1, - - - , X, ber.s. from u(0,0),and let Z, = n(0 —
Y,), where Y,, = max(Xy,---,X,). Find the limiting distribution of
Znu

(sol) The cdf of Z,, is
t
Fo () = P(Zn <t)=P(Y, ze—%) —1-P(Y,<0- )
b—t/n t/—e)”:>1—e*t/9
0 n

cdf of €0), e Zy i>£(9).

= 1—(

y=1-(1-

Theorem 4.3.1. X, i> X=X, i> X

(pf) Let x be a continuous point in Fx(x) and &€ > 0.

Fx,(x) = P(Xy, <x)=P{X, <x}N{|Xy —X| <e}) +P({Xy <x}Nn{|Xn—X]| > ¢}
< P(X<x+4¢)+P(|X,—X| >¢)

. lim F,(x) < Fx(x +e¢)
now,

P(X, >x) = PHXy>x}n{|Xy,—X| <e})+P{X, >x}n{|X,—X]| >¢})
< P(X>x—¢)+P(|Xy—X| >¢)

ie. 1-P(X,>x)>1-P(X>x—¢)—P(|X,—X| >¢)
ie. Fx,(x)>P(X<x—¢)—P(|Xy,—X|>¢)
. lim Fx, (x) > Fx(x —¢)

Conclusively, Fx(x —e) <lim Fy, (x) <lim Fx, (x) < Fx(x +¢)
By letting e — 0, we have lim Fx, (x) = Fx(x).



v)
Theorem 4.3.2. The converse of Thm 4.3.1 does not hold. i.e.,

Xy 25 X X, - X.
However, if X is degenerate at ¢, then it is true. i.e.,

D P
XnHC:XnHC.

(pf) im P(|X,, — | < €) = lim{Fx, (c +¢) — Fx,(c — &)} = Fx(c+) —
Fx(c—=)=1-0=1.

(vi)

Theorem 4.3.3. X, L, X, Y, L0 = Xn+ Yy P.ox

(vii)

Theorem 4.3.4. X, — X, g :conti. ftn. = ¢(X,) D, g2(X)

(viii)

Theorem 4.3.5. (Slutzky Thm) X,,, X, Y,, Z, : rv's ki, ky :
const.

S.t. Xn & X, Yn i> kl, Zn L k2 :> Yn +Zan & kl +k2X.
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@ bounded in probability

(i) Landau’s Big Oh and little oh

When we write x, — 0 as n — oo, what is the rate of convergence?

Let {r,} C (0, 0) be the rate of convergence (e.g. 7, =n~F, P > 0)

.o Xm
e X, =o0(ry) iff —— 0 as n— o0
T'n

o %, = O(ry) iff n_m?<oo
n

iff 3 M€ (0,00), 3N st. "n>N, [22[ <M.

We can extend this notation when X, is r.v.

X
o Xu=o0p(ry) iff =250 iff Ye>0, P(|X2]| >¢) =0

n

o Xy =Op(ry) iff e >0,3I M st. P(|22] > M) <e

if X, =0p(1), then {X,} is called bounded in prob.

(ii) Taylor expansion

If g(x) is k-times differentiable at x = x,
k . .
we have g(x) = ) ]l' g (x0) - (x — x) 4+ o(|x — xo[%) as |x —
j=0 7
x0| — 0



(iif)
Theorem 4.3.6. X, — X = X, = Op(1)
(pf) Let 77 be continuous point in Fx(x), then
P([Xul < 1) = Fx, () = Fx,(=17) = Ex(i1) = Ex(=11) -~ (%)
now, can choose 771 and 7, s.t. for a given ¢ > 0,
Fx(x) <§ for x<m & FX(x)>1—§ for x >

Take 7 = max(|n1], |n2]), then

P(IX| <) = Fx(n) ~Fx(-n7) 21— 5~ S =1-¢

8_
2
>

By taking limit in (*), we have lim P(|X,| <) > 1 —e.

(iv)
Theorem 4.3.7. X, = Op(1), Yy —5 0 = X,Yp —> 0
(pf)

P(|X,Yn| =€) = P(|XuYn| > ¢ |Xu| < M)+ P(|XnYu| > ¢, | Xu| > M)

S HmP(|X, Y| =€) = LHmP(|X,Y, > ¢ |Xu| < M)

< HmP(|Yy| >e/M) =0



@ A-method

(i)
Theorem 4.3.8. Y, = Op(1), X, = 0p(Yy) = X 0
(pf)
P(|Xu| =€) = P(|Xa| 2 & [Ya| < M)+ P(|Xu| 2 & [Yu| > M)
€

X
< PIFH =

)+ P(|Ya| > M)
Take limit on both sides.
3

)+ lim P(|Y,| > M)

imP(|X, > ) < limP(3") >
-0 !
(i) A-method
Theorem 4.3.9. Assume /n(X, —6) D, N(0,0?) and g(x) is diff. at
x =6,8'(8) # 0. Then, V/n(g(X,) — g(8)) - N(0,0%¢’(6)?)
(pf) By Taylor expansion,
§(Xn) = g(6) +8'(0)(Xu — 0) + 0p(1Xu — 0])
ie. Vn(g(Xn) —g(0)) =g'(6) - vn(Xu —0) + 0y (vn| X — 0])

now, \/n(X, — 0

) = Op(1), so that by Thm 4.3.8., 0, (v/n|X, — 0]) =
P
0,(|0,(1)]) — 0.

(iii) Example
Assume v/i(X — ) = N(0,0?).
Find the limiting distribution of /n(X? — p?).
(o) gx)=x% g)=20 g =4
Vi (X2 —p?) 2 N(0, 4u%0?)



@ mgf technique

(i)
Theorem 4.3.10. {X,} : seq. of r.v’s with mgf My (t).
X :rv. with mgf Mx(t). If lim My, (t) = Mx(t), then X, D x.

(ii) useful result for limit

If limy(n) =0, then lim(1-+ Z + @)C” = ebe

(iii)
Example 4.3.3. Z ~ x?(n). Show thatY = %/%Z 2, N(0, 1)
(29
My(t) = Elexp {t- (5t)}] = =/ Va1 E [o12/V2)

V2n
2.n t "
= w21 -2y
_ —t/\/2/7 \/> Z/n —1
now, etm:1—{—t\/%+%(t\/%)2+%(t\/%)3+o(n_3/2)

3 2
et\/Z/n_t\/get\/m — (1+t\/7+ + \/_t +O(n_3/2)_t\/§_2i__
n 3n3/2 n n

== E g = 22 o
My(t) — e tmgf of N(0, 1)



4.4 Central Limit Theorem

Theorem 4.4.1. Xy, - -+, X;, : r.s. from a distribution with mean y, variance
2. Then, /n(X — u)/c = N(0, 1)

(pf) Let m(t) = E[e!®~")] :mgfof Y = X — .

”(0) 12 mm(‘)) 3

m(t) = m(o)+m' (o)t +

g, mp ..
= 1+%2t2+@t3+---
Now, consider mgfof Z = /n(X —u)/c
M) = Elexplt- 2] = Efexpt- 1) - eple- J1E)
= [E(oxp(t- 2N = ()
B [1+%2';22n + m";(O) ' (72:133/2 +o = (1+%+ tp;n))n —e

Example 4.4.1. X;,--- , X, : rs.from B(1, ,p). Then, by CLT,
o D
V(X —p)//p(l1—p) — N(0, 1)

Example 4.4.2. Find hs.t. v/n(h(X) — h(p)) — N(O, ¢?), c: const.
(sol)

V(X —p) = N(0, p(1—p)) = v/n(h(X) = h(p)) = N(0O, h'(p)*p(1 -

p))
SHPPp(L-p) = = H(p)=1[2/p(1-p)
h(p) = (2¢) - arc sin(,/p)

This kind of transformation called the variance stabilizing transformation.
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4.5 Asymptotics for Multivariate Distributions

@D Euclidean norm

(i) definition: v = (vy,---,vp) € RP, ||v|| = (Lv?)¥?2: Euclidean
norm.
(ii) properties

(@) ||v|] <0. Equality holds whenv =0
(b) "a € R, ||av|| = a||0|

(© |[u+o|| <||ul|+]|v|| : triangular inequality.

(iii) basis

e;=(0,---,0,1,0,---,0) ey, --,ep:basis for R,

Lemma4.5.1. [o;| < |[o|| < X0 [vi], j=1,---,p
(ph oF <L of =l = [yl < |0l
also, ||| = [| Zviei|| < Lloilllei]| = L vil-
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@ Convergence in probability

(i) definition : {X,} converges in prob. to X if P(||X, — X|| > ¢) — 0,
and denoted by X, £ x

(ii)

Theorem 4.5.1. X, i> X iff Xn]. i> Xj, j=1,--,p

(pf)

(=) By Lemma 4.5.1, [X,, — X;| < [|X» — X]|
(<) By Lemma 45.1, Y} [Xy, — X;j| > [|X; — X||

p
S P([Xn = X[ 2 &) < P(Y[Xn, = Xj|l 2 6) < ) P(|Xy,— Xj| = 2/p)
i=1

(iii) Examples

(i)

(i)

X1, -+, Xn :rs. from a distribution with mean y and variance
o

We know that X —2 u, s? L by Thm 4.5.1, (X, s?) LN

(u, ).

X1, -+, Xy :rs. from a distribution with mean p and var-cov.
.

Weknowthat}_(j L, wi, j=1,---,p, thenX L,u

s\ P
also, s7 = ;17 YL (X — Xj)? — o7 and s = ;17 Y (X5 —
X;) (Xix — Xj) L o, we have S Loy,
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@ Convergence in distribution

(i) definition : {X,} converges in distribution to X if Fx, (X) — Fx(X)
for all points x at which Fx(x) is conti, and denoted by X, 2, x.

(ii)

Theorem 4.5.2. X - X, g: conti. = g(X,) D, 2(X)

(iii)

Theorem 4.5.3. X, — X iff M, (t) — M(t)
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@ CLT

(i) multivariate CLT
Theorem 4.5.4. {X,,} : seq. of iid random vectors with mean y, var-
cov.T = Yy =LV (X —p) = Vi (X —p) =5 Ny(0, £)
(pf)
_ r Ly S = L oyx -
Mu(t) = Elexpit -2 Y(Xi—p)} =E lexpi == Y (Xi—m}]
1
= E [eXp{ﬁ ZWZ}], Wi = t/(Xl' — ]/t)

now, Wy, -+, W, are iid with mean 0, variance t'>t.
D
Then, by CLT, Z = %ﬁ YW, — N(0, t'%t)

now, M,(t) = E [exp{\/iﬁzw,'}] = E [¢"?], i.e. mgf evaluated at
t=1.

Therefore, My (t) — exp(0-1+ 3¢St -12) = exp(t'St/2) which is
mgf of

N,(0, ).

(ii)
Theorem 4.5.5. X, Db, Ny(u, ). A:mxp, b:mx1 =
AXy+b -2 Ny(Ap+b, AZA')

(iif)
Theorem 4.5.6. {X,} : seq. of p-dim random vector.
VI (Xn = 1) =5 Np(0, ). g(X) = (g1(X), -+, 8k(X))": R” = R
B= (52 : kx pmatrix. Then, v/n(g(Xy) —g(#)) —+ Ni(0, BEB)
]
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CHAPTER 5. Some Elementary
Statistical Inference

5.1 Sampling and Statistic

e sampling with (without) replacement.

e random sample, statistic

5.2 Order Statistic

(D definition

Xy, , Xy rs. from a pdf f(x) and cdf F(x).

Let Y7 be the smallest of X;’s, Y, be the 2nd smallest of X;’s, - - - , and Y}, be
the largest of X;’s. Then, Y1 < Y, < --- < Y, is called the order statistics
of Xy, -+, Xy.
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@ pdf

(i) joint pdf of Y7,---,Y, (Thm 5.2.1)

S yn) =nl f(y1) - flyn), 1 <y2<- - <Yn

(pf) Consider transformation (x1,---,xz) = (Y1, ,Yn)-
Then, there are n! methods, and Jacobian is £ 1.

Therefore, g(y1, -+, yn) = L1y [Jil f(y1) -+ fyn) = Ty £ ().

(ii) marginal pdf of Yj

n!

Sk(yx) = =) —R)! (Fyi)) 1 (1 = F(y)" " f (vie)

(iii) joint pdf of Y; and Y; (i < j)

n! i j—i—

(1= F(y))" T f (vi) f (v))

(iv) Example 5.2.3.

X1, X2, X3 r.s. fromu(0, 1), Y] < Y < Y3 : order stat. Find the pdf
of the sample range Z; = Y3 — V7.

(sol) zi=y3—y1, 2=Y3 —Yy1=22—21, Y3=22, |J]| =1
The jpdf of Y7 and Y3 is

gy y3) =6(y3—y1), 0<y1 <ys <1

. ]’l(Zl, 22) =6z1, 0<z1 <z <1

1
" hl(zl) :/ 621 dzs :621(1—21), 0<z1 <1
71
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@ quantiles

(i) definition

X : r.v. with conti. edf F(x). ¢, = F(p) : p th quantile of X

(i) estimator of &y.

(iii)

(iv)

(V)

Let Y7 < --- < Y}, be order statistic, and consider Y}, where k =
[p(n 4 1)], as an estimator of ¢,. For Y to be a good estimator of .

EF(Y)] = [ Fogd(v) du

n!

| F ) Gy Fe) (0 = By

Letz = F(yx), then dz = f(yx)dyy, so that

E[F(Yy)] = / = 1)1!1(!11 _k>!zk(1 —2)"kdz = kL p.

n+1

Y; is called the p th sample quantile or 100p — th percentile.

five number summary (J. Tukey)
Y1, Yiosmi1))r Yis(ma1) Yizsme1)] Yo
boxplot

Boxplot is based on the five number summary.

To exhibit potential outliers, define the lower and upper fence (LF, UF),
LF= Q) —h, UF=Q3+h, h =15(Q3 — Q1).

Points that lie outside the fence (LF, UF) are called potential outlies.

Example 5.2.4.
data : 56,70, 89,94, 96, - - - , 110,113,116 (n = 15)

Yl = 56, Q1 = y4 = 94, Qz = ]/8 = 102, Q3 = ]/12 = 108, y15 = 116,
h =1.5(108 —94) = 21 — (LF, UF)= (73, 129)

56, 70 are potential outliers.
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(vi) g-qplot

X :rv. from a location-scale family with cdf F(*;*), where F(x)
is known, but a and b are unknown. Let ¢, , be the pth quantile of

z = 3% now,

Cxp—a
=) =P(Z <)
S Cyp=bGp+a  (&p:known, {yp:unknown )

Now, Y is estimator of ¢y, where py = k/(n +1). The plot of Yj
VS (2 p, is called g-q plot. If X is distributed as F = (*3*%), then the
g-q plot should be linear.

p=PX <8y =P(Z<

@ confidence intervals of quantiles

Y : point est. of , where k = [(n 4 1)p].
Asa ClI.for {p, consider (Y;, Yj) s.t. i < [(n+1)p] <]
When we say (Y;, Yj) as 1009% C.I., what is 9?
Need to compute ¥ = P(Y; < ¢p < Yj).
{Y; < ¢p} < {atleast i of X values are less than §, }
{Y; > ¢y} < {fewer than j of X values are less than ¢, }

now, consider this problem as Bernoulli trial, i.e., if X < ¢, , then success,
and if X > (, then failure. Also, the prob. of success is P(X < §p) =

F(¢p) = p.
L P <& <Y) =X (D P —p)r =
We call (Y;, Y;) as 1007% C.I. for Gp.
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5.3 Tolerance Limits for Distributions

(D definition

X]./"

-, Xy @ r.s. from a dist" with cdf F(x), Y1 < -+ < Y}, is order stat.

Then, (yi, yj) st. v = P[F(Y;) — F(Y;) > p] is called 1007% tolerance
limits for 100p% of the prob. for the dist" of X.

@ computation of y

() jpdfof Zy = F(Yy), -+, Zu = F(Yy)

(i)

Note that Z = F(X) ~ u(0,1) because G(z) = P(Z < z) = P(F(X) <
z) = P(X < F1(2)) = F(FY(z)) = 6. Hence, Zy,- - ,Z, are order
stat. from u(0, 1), so that the jpdf of Zy,--- , Z, is

h(oy, -+ ,0n)=nlI0< Z1 << Z, <1)
computation of y

To compute 7, note that

1-p r1
Y = P(Z]' — Zi > p) = /0 / h,']'(Zl', Z]) dZ]'dZi
p+zi

where

n! . i .
oG i e &zt

This computation is quite tedious. So, we use an alternative way to
compute . Consider transforming

h(Z,’, Z') =

Wi =21, Wo=2,—-2Z1, W3 =23—2p,-- Wy=2Zy,—2Zy,1
Then Z; = 2;':1 W; and |J| = 1. Therefore, the jpdf of Wy, - -- , W, is

k(wy, -+, wy)=n,0<w;,i=1,--,nw+ - +w, <1
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Now, the jpdf of Wy, - - - , W, is symmetric in wy, - - - , w;, and hence,
the pdf of Wi 1 + Wio + - - - + W; is the same as that of Wy + W, +
"'+Wj_i- Note that Wi+1+"'+Wj = Z]‘—Zi and Wy + --- +
W]'_i = Z]'_i. Therefore,

v=P(Zj=Zi>p)=P(Zj-i>p)
where the pdf of Z; is

n!

() = i o

Hence, .
'y:/ hi_i(v)do
p

(iii) Example 5.3.1

Let Y] < --- < Yg be the order statistic from conti. distribution. Com-
pute v when we use (y1, ¥s) as a tolerance limit for 80% of the distri-
bution.

0.8

v =P(F(Ys) —F(Y;) >08) =1~ [ 300*(1 —v)dv =0.34
0
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5.4 More on Confidence Intervals

(D approximate C.I.

When Z = (X —u)/o ~ N(0,1), then 100(1 — «)% C.I. for p is (X —
Zy 120, X+ Z, /o0) if 0 is known. When we known the asymptotic distribu-
tion only by CLT such as /n(T —6) — N(0,02) then (T — Z, o0/ /1, T+
Zy /20 /+/n) is called approximate 100(1 — «)% C.I. for 6.

@ examples

(i) ClI forpu

X1, -+, Xy rs. from a dist. with mean y and o? (both unknown)
Find approximate 100(1 — )% C.I. for p.

(sol) Vr(X—pu)/s 5 N(0,1)

_ s
A e le/zﬁ
(i) CL forp
X1, , Xp: vs. from B(1, p). By CLT, \/n(p — p) — N(0, p(1 —p))
also, \/i(p — p)/ /(L= ) — N(0,1)

. p(1—p
Pt Zap pA—p)

(iii) C.I. for p under normality

X1, , Xp:ts. from N(u,0?). V(X — ) /s ~ t(n — 1)

S

NG

Xﬂ: t(x/Z
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(iv) C.I for pu1 — u2

X1, , Xy, r.s. from a dist. with mean y, variance 012 and

Y1, -, Yy, r.s. from a dist. with mean py, variance (722 are indep.
Want to obtain approximate C.I. for p1 — uo.

Let n = ny + np, and assume “> — Ay, 2 = A,. By CLT,

V(X —pu)/op — N(O,1). "
(X ) oy = \/nzlm—loz— W) /o

S EN©0,1) = N(0,1/4).

Vi[(X=Y) = (p1 —m2)] = N (O,A—liji—Zi) ,

Also,

. (X — Y) — (,ul — “I/lz) N N(O,l)

2 2

\oar
o s? g2
i(X_Y):i:Zch/Z _1+_2
ni ny

(v) C.I for py — u under normality

Xj, -+, Xn,: r.s. from N(pq,0?) and
Y1, -, Yo 1. from_ N (uz, (72) are indep.(common variances)
X ~ N(p1,0%/m),Y ~ N(pz, 0/ n3)

(X — Y) _ (Vl — VZ) ~ N(O,l)

1 1
(0 H_1+E
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Now, (11 —1)s3 /02 ~ x*(n1 — 1) and (np — 1)s3/02 ~ x%*(na — 1)

1
= ﬁ{(”l —1)s7 + (np — 1)s3} ~ x*(n1 + np — 2)

Z s (m—1)s2+ (np —1)s3

T = ~t(ny+ny—2),s,=
\/V/(nl—{—nz—Z) (m 2=2) P ny+ny—2
(vi) C.IL for p1 — p2

X1, , Xp,: vs. from B(1, p1) and
Yy, -+, Y, rs. from B(1, py) are indep.
By the same argument as in (iv),

o (1—p1)  pa(l—p
(pl_PZ):l:Za/2\/p1( P1)+P2( p2)

ni np
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5.5 Introduction to Hypothesis Testing

(D definitions

(i) null and alternative hypothesis

(ii)

Xj, -+, Xp: r.s. from a dist. with pdf f(x : 6), 6 € Q.
statistical hypothesis: Hy : 8§ € wo vs H; : 0 € wy, wgUw; = (),
wyNwi = ¢

Hp : null hypothesis, H; : alternative hypothesis

two type of errors

test statistic: a statistic T = T(Xy, - - - , X,,) for testing Hy vs Hy
rejection region(critical region): a set C where Hj is rejected

type I error: an error caused by rejecting Hy even when Hy is true
type Il error: an error caused by accepting Hy when Hj is true

a critical region C is of size a if &« = maxgc ., P[(X1,- -+, Xn) € C]

a power of a test is Py[(X1,- -+, Xyn) € C|, 0 € wy, i.e. poweris 1 —
Pytype Il error], 0 € wy

the power function of a critical region C is

Ye(0) = Po[(X1,- -+, Xu) €C,0 € wy
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@ examples

(i) testfor p

Xj,- -+, Xp: rs. from B(1, p). Want to make a test of size « for testing
Hp:p=povs Hy:p < po.

test statistic: S = Y1 ; X;: # of successes

rejection region: reject Hy if S < ks.t. « = Py, (S < k)

assume n = 20, Py = 0.7, « = 0.15, Py, (S < 11) = .1133, Py, (S <
12) = 2277

Hence, a test of size .15 rejects Hp if S < 11.

Compare power function for S < 11 and S < 12.(Fig. 5.5.1)

(ii) large sample test for p

X1, -+, Xp: r.s. from a dist. with mean y, variance o2.

test of size a for testing Hy : 1 = po vs Hy : > o

test stat: X, rejection region : X > k

By using /n(X — uo)/s — N(0,1) under Hy, reject Hy if
V(X — o) /5 > Z,

Now, compute approximate power function
Y1) = Pu(Z = Zy) = Pu(X = o+ Zas/V/n)

_ X—p _ Ho— o1 [P0~
= P“<s/\/‘>s/\/‘+z"‘)_1 @(S/\/_—i-za)

(iii) test for y under normality

Xy, , Xp: r.s. from N(u,0?)
test of size a for testing Ho : pt = po vs Hy : > po

X —
test stat.: t = Ho

s/\/n

> ty(n—1)

- 116 —



5.6 Additional Comments about Statistical Tests

(i) Large sample two-sided test for u

X1, -+, Xu: r.s. from a dist with mean y, variance o2

test of size a for testing Hy : 1 = po vs Hy : u # po

Intuitively, we reject Hy if X < hor X > ks.t.

K= PHO(X <h or X > k) = PHO(X < h) +PH0(X > k)

Now, it is reasonable to set Py, (X < h) = a/2and Py, (X > k) = /2

X—]/lo
s/\/n

i.e. Reject Hy if > Zy2

(ii)) Randomized test

Xy, -, Xyo r.s. from P(6).

test of size a = .05 for testing Hp : 6 = 0.1 vs Hy : 6 > 0.1
10
test stat: Y = 2 X;, critical region: Y > k.

i=1
Note that Y ~ P(1), therefore P(Y > 3) = .080, P(Y > 4) = .019
Hence, size & = .05 test is rejecting Hy if Y > 4
This test is called a non-randomized test. To achieve .05 = Pp, (reject Hy),
we need a randomized test.

Let W be a Bernoulli trial with prob. of succes

.050 —0.01 1
P(IW =1) = % = 2—1, and let the rejection region be

(Y19, X; >4} or {LX; =3and W = 1}, then

31 .050 —.019

(iii) p-value(observed significance level)

Y =u(Xq, - ,X,): test stat.

rejection region: Y < ¢

If the observed test stat. is d, then Py, (Y < d) is called the p-value
of d. In general, p-value is defined as the minimum of prob. of type I
error to reject Hy for a given value of test stat.
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5.7 Chi-square Tests

3 types of chi-square test:
goodness-of-fit(GOF) test, homogeneity test, independence test

(D goodness-of-fit test

(i) derivation

Xy ~B(n,p1), Xo=n—-X;,pp=1—p;

(X1 —np1)?

np1(1—p1)

(X1 —np1)? n (X1 —np1)?
npi n(1—p1)

(X1 —np1)?>  (Xo—np2)? 2

= + = x21
" s x-(1)

Q1

In general, let X = (X, - - - , Xi_1) ~ A (n, p1,- -, Pk—1) and
Xp=n—(X1+ - +Xe1), pk=1—(p1+--+ pr1), then

k Xi — np; 2
Q=Y EiT i 2 2 g
i=1 npi

(i) Example.5.7.1

Want to test a die is fair by tossing 60 times.
Hy:pijo=""=peo = %, pio =prob. of obtaining face i
data: 13,19,11,8,5,4 . np; = 60 - £ = 10

—10)2 4 —10)?
Qs = —(13 1010) + -+ % =15.6 > X.205(5) =111
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(iii) computation of degree of freedom

Ho:p1=pio,- -, Pk = Pro
Where, pjo is not completely specified, for example

1 .
b /A TPy )2y, i =1,

k 2
X' -_— H v
In this case, Qx_1 = ) (ln—pnpl) 2, xX(k—1-2)
i=1 !
i.e. 2 d.f. are lost to estimate y and o>

@ homogeneity test

Consider two indep. multinomial dist.
X1= (X, Xia) ~ A (1, p11,, Pra),
X; = (X12,- - ,sz) ~ M (N2, P12, Pr2)
Ho:pn = Plz, szl = Pk -
”]pz] . Xnt+Xp oy,
test stat: Q = ]Z;; npi , bij = ! j=12
df:(k—1)+*k—-1)—(k—=1)=k—-1
In general, for the r X ¢ contingency table, d.f.is (r — 1) x (¢ — 1)

@ independence test

Consider two categorical variales A and B. A has a categories Ay, --- , A,
and B has b categories By, - - - , By,.
LetPi]- = P(AiﬂB]'),iZ 1,--- ,IZ,j= 1,---,b.
Hp: two Variables are indep
—n

test stat.. Q = 2 Z pl] = ZZXZJ

j=1li= an]
A X;. X
=pibj=-" X = ZXij/ Xj= ZXZ']'

1

d.f.:(ab—1) — {(a—1)+(19]—1)}:ab—a—b+1:(a—l)(b—l)

"3)
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5.8 The Method of Monte Carlo

(D random number generation

(i) Thm.5.8.1

U~u(0,1), F:conti.d.f. = X =F Y(U)~F
(pH) P(X < x) = P(F"1(U) < x) = P(U < F(x)) = F(x)

(i) Ex.(generation of &(1),i.e. F(x) =1—¢e™¥)

S F Y u)=—log(1—u),0 <u < 1,then X = —log(1—U) ~ &(1)

(iii) Ex.(estimation of 71)
Uy, Up:iid. u(0,1)
v I uz+ Uz <1
0, O.W.
S E(X)=m/4= 1 =4E(X)

n

.". Monte Carlo estimation of wis & =4 - — 2 X
n
i=1

@ Monte Carlo integration

(i) Monte Carlo integration

b b 1
| gx)dx = 0 =a) [ g(x)g—dx = (b= DE[(X)], X ~ u(a,b)
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Therefore, the Monte Carlo integration of g(x) is

b 1 2
/ﬂg(x)dva —a £2g X; ~ u(a,b)

1=
(ii) estimation of 7t by Monte Carlo integration

Letg(x) =4v1—x2,0<x <1,
thenn_/ ¥)dx = E[g(X)], X ~ u(0,1)

@ Box-Muller transformation

Y1, Yoriid. u(0,1), Xy = (—2logy;)/? cos(2mys), X2 = (—2logy;)'/? sin(27ty,)
1 X2
syr=exp[— (3 +x3)/2], 2 = —arctan( )

X1
(~xp)exp[~ (3 +x3)/2] (~mexpl-(B+3)/2) | 1 [ 2422
= —xp/x% 1/x = 2—695]0 >
@) (1+x2/22) 2n)(1+x2/22) T

. X1, Xp:indep N(0,1)

@) accept-reject generation algorithm

(i) algorithm: Y: r.v. with pdf g(v). U ~ u(0,1), Y, U: indep.
f(x):pdfs.t. f(x)/g(x) < M. Then, the following alforithm generate
r.v. X with pdf f(x).

(1) generate Y and U
@ IfU < f(y)/Mg(y), then take X = Y. Else return to (1)
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(ph)

P(X<x) = PY<x|U<f(y)/Mg(y)]
PlY <x, U< f(y)/Mg(y)]
P(U < f(y)/Mg(y)]

LAY duyg(y)dy
ST du g (y)dy

= / xoof (v)dy

é_ e 2 g(x) = (14477
7T

easy to generate since its inverse cdf is known.

= /ge_xz/z(l + x?) is maximized at x = +1

(ii) example: f(x) =

S.M =152
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5.9 Bootstrap Procedures

(D definition

Xj,- -+, Xp: r.s. from a dist. with pdf f(x : 6), 6 € Q.

02 6(X),X = (X, -, X,)

X* = (Xj,---,X;) is called bootstrap sample if X7, j=1,-- -, n is drawn
with replacement from (Xj, - - - , X,,), i.e. X; is selected with prob. 1/n.

@ percentile bootstrap confidence interval

GA]* = 9(X;-“), X7: j-th bootstrap sample, j = 1,- - -, B, where B is bootstrap
size which is usually larger than 3000.

9(1) < 0(2) <..- < 9(3): order stat. for 0], - - - , 0.

Then 100(1 — a)% percentile bootstrap C.I. for 6 is (ég‘m), éZ‘

B+1_m)), where
m = [§B].

@ bootstrap testing

X1, -+, Xy, rs. from a dist. with cdf F(x)

Yy, -+, Yy, r.s. from a dist. with cdf F(x — A)

Hy: A=0vsH;: A>0

X* = (x{, - ,x5,), Y = (y], - ,¥;,): bootstrap sample.

Want to obtain bootstrap p-value.

Let x = nil Y xi, ¥ = nlz Yy, and J?]’f, ]];f be sample mean of the j-th boot-

strap samples, then the p-value of Hy: A =0is

B
1)~ % 27 -7)
=1

S|~

J
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